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Introduction to Part 2

This is the second part of my book about waves. Whereas the first part concerned
itself with theoretical waves and signals, this part starts by focusing more on
waves in reality.

When dealing with maths, it is easy to know if ideas are correct because either the
maths works or it does not work. When describing real-world waves, for which it is
harder to test theories, there is much more leeway for being wrong. It is also
harder to follow the standard naming of concepts because the names vary between
different people, languages, regions, subjects and mathematical cultures. Waves
and signals are often explained badly, and it is frequently difficult to discover
exactly what someone means by a particular word. At times in this book, I have
used my own naming conventions to avoid ambiguity.

To see if this is the latest version of this book, visit www.timwarriner.com

To tell if this PDF is being displayed correctly, this line of text:
Twx?0 ¢ @-0+vabcABCxyz XYZ

... should appear roughly the same as in this picture:

Twx?00 ¢ @-0+vabc ABCxyz XYZ
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Chapter 31: Real-world waves

So far, in this book, we have looked at waves in an abstract, theoretical way. Now,
we will look at waves as they appear in nature. [ will call these “real-world waves”.
By this, I mean the fluctuating movement of some real-world entities, the
behaviour of which can be portrayed using waves.

Ideally, real-world waves would not be called “waves”, and only their portrayal
would be called “waves”. However, a combination of convention, language and the
effort in doing otherwise, means that real-world entities themselves are often
called waves if their behaviour can be described using waves. For example, people
often say that “sound is a wave”. Generally, they mean that sound is a phenomenon
that has a significant characteristic that can be portrayed using waves. Sound’s
wave-like attribute is not the entirety of what sound is. Usually, people who say
things such as “sound is a wave” are doing so to save time in an explanation.

The distinction between the behaviour of an entity and the waves that portray it
leads to the following idea. There is a way of thinking about real-world waves that
will help reduce a lot of confusion while you are learning, and that is to believe
that:

“Real-world waves do not exist on their own.”

A number of people will disagree with this statement, but it is irrelevant whether it
is completely true or not - it is the best way to think about real-world waves while
you are learning about waves. When you have learnt enough to be completely sure
of the validity of the statement, your knowledge will be superior to anything in this
book.

The statement means that waves do not exist as entities in their own right in
nature. Instead, there are real-world entities that have properties that behave in a
way that can be described using waves. To put this another way, there are entities
that have characteristics that, to some extent, match some of the theoretical
characteristics of circles. There are no entities that are literally waves - there are
only entities that have particular properties that can be described with waves. For
example, a magical flying snake that flies in the shape of the curve of a Sine wave is
not a wave - it is a magical flying snake whose flight can be described using waves.
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The idea is really saying that a wave is something you see only in a graph or a
formula. The graph or formula portrays the fluctuations of an aspect of an entity,
but those fluctuations are not, in themselves, waves. Most explanations of waves
do not make this distinction, which, if you think too hard about waves, can be very
confusing.

Waves describing real-world phenomena are often portrayed in illustrations as if
they were the curve from the graph of a Sine wave travelling through space:
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This is a simple way to portray an idea, but it is misleading if taken literally. It
suggests that waves on their own travel through space. A better portrayal of a wave
would be to have an object travelling through space leaving a wave-like trail,
perhaps like this:
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To summarise all of the above, you should think of all waves as showing the
characteristics of entities, and not existing on their own. This will help you learn
about waves more easily. There are times in the first four chapters of this part of
this book when I will temporarily use the idea of waves existing in reality because
it makes the explanation easier to write and read. [It is often much easier to
discuss waves by treating them as if they did appear on their own.]

To learn about waves in the real world, we will first look at some examples to give
an idea of the range of possible types. In this and the following chapters, we will be
using radians in the formulas.
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Pigeon wing tip waves

An easy way to introduce the idea of waves in the real world is to consider the
flight of wood pigeons. A wood pigeon, when in the middle of travelling long
distances through the air as part of its daily routine, raises and lowers the tips of
its wings to about the same distance above and beneath the vertical centre of its
body. A wood pigeon also raises its wings at a very similar rate to which it lowers
them. [An adult wood pigeon can be distinguished from other types of pigeons and
doves by the white band around the sides of its neck.]

For the purposes of this example, we will work with an idealised model of a wood
pigeon. In this model, the wood pigeon moves its wings above and below its body
to the same distance, and it raises its wings at the same rate as it lowers them:

\
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We will say that the pigeon flaps its wings upwards and downwards once every

second, and that it moves its wings 25 centimetres above and below the centre of
its body. Most importantly, we will say that if we take measurements of the wood
pigeon’s wing tip height in relation to the centre of its body over a set amount of
time, we will end up with a Sine wave.
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The amplitude of the Sine wave will be equal to the maximum or minimum vertical
distance from the wing tips to the centre of the pigeon’s body.

—— - ——
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The amplitude of the Sine wave for our pigeon is 25 centimetres. We will give this

in metres for consistency’s sake, and say it is 0.25 metres. The frequency of the
Sine wave is 1 cycle per second. We will say that the time in the formula is the time
since we first started observing the pigeon.

The formula that gives the height in metres of our wood pigeon’s wing tips above
the centre of its body at any moment in time is (in radians):
“y=0.25 sin 2mt”

The graph for one cycle looks like this:
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All of this means that we can describe the movement of a wood pigeon’s wing tips
using waves. The waves are unlikely to be ones that will interest electrical
engineers or quantum physicists, but they are still valid waves.
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The pigeon wing tip wave follows the rules for a basic Sine wave formula:
“v=Asin (2 * ft) + ¢)”
.. where:

The amplitude of the wave is the maximum distance that the wing tips
reach above or below the centre of the pigeon’s body. If the pigeon raises
and lowers its wings to a lesser extent, the amplitude of the wave becomes
less. If the tips reach to higher and lower points, the amplitude becomes
higher. A larger pigeon would have a higher amplitude; a smaller pigeon
would have a lower amplitude. [Although, in reality, wood pigeons that are
old enough to fly are all the same size.]

The frequency is the number of times that the pigeon completes one raising
and lowering of its wing tips in one second. If the pigeon flaps its wings
more quickly, the frequency will be higher. If it flaps them more slowly, the
frequency will be lower. We will call one raising and lowering of the wing, a
“flap cycle”.

The phase gives the position of the wing tips when we first started
observing the flying pigeon. On its own, the phase in this case does not tell
us much. However, if we had two pigeons flying side by side, the phases of
the pigeons might be different. For simplicity’s sake, we will say that the
phase of our pigeon is zero. This means that when we first started
observing the pigeon, its wing tips were at the same height as the centre of
its body and about to rise.

The time is the number of seconds since we first started observing the
pigeon.

As all measurements are from the vertical centre of the pigeon’s body, and
its wings are attached to its body, the concept of mean level is less useful, so
we will say it is always zero. If we had a wood pigeon that could raise or
lower its shoulders while it flew, then that would count as a mean level, but
we will ignore that for now. Note that the mean level is not the height of the
pigeon above the ground - the y-axis shows the height of the wing tips with
respect to the centre of the pigeon’s body. The pigeon could be flying at a
height of 1 metre, 10 metres, or 100 metres, and that fact would not be
reflected in the graph or in the formula.
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One thing to notice is that there is only one wave generated by the pigeon’s wing
tips. We could say that the wave is a Sine wave, or we could say that it is a Cosine
wave. If we treat the pigeon’s wing tips as being described by a Sine wave, then
there is an implied corresponding Cosine wave, and if we treat the pigeon’s wing
tips as described by a Cosine wave, then there is an implied corresponding Sine
wave. The corresponding waves in this situation are theoretical, and do not
describe anything in reality. The pigeon’s wing tip waves do not derive from a
circle - the movement of the wings is a result of the pigeon’s muscle and bone
structure, and ultimately controlled by the pigeon’s brain. The fact that the
movement can be described by a pure wave is just a coincidence. Despite this, we
can still treat the waves as being derived from a circle. Doing so can make the
waves easier to visualise, and might simplify some calculations.

Notice how it is an arbitrary choice whether we treat the wing tip wave as being a
Sine wave or a Cosine wave. It does not matter which is chosen as long as we are
consistent. For the pigeon as we have described it, using a Sine wave means that
we do not need to include a phase in the formula - the pigeon starts with its wing
tips at the same height as the centre of its body. If we had used a Cosine wave, we
would have needed a non-zero phase, so the formula would not have been as short.

The wing tip wave would be useful if we were studying certain attributes of bird
flight, and for some aspects of bird flight study, the wing tip wave would be all we
needed. [It is possible to distinguish between many birds by the wave or signal
drawn out by their wing tips.] However, the resulting wave does not tell us
everything about the pigeon - it does not tell us the speed of the pigeon, the
direction, the weight, the efficiency, how feathery it is, what pigeons eat, where
they nest, and so on. It only tells us the distance of the height of its wing tips above
or below the centre of its body with respect to time. If a scientist spent years
studying pigeon wing tip waves, they would not learn a great deal about other
aspects of pigeons. Similarly, if someone created a robotic pigeon with wings that
flew exactly according to the wings described in the wave graph, they would not be
able to say that this meant the robot was identical to a real pigeon. The point I am
trying to make here is true for all waves that describe a real-world characteristic -
the wave describes only one attribute of the entity: the entity is not the wave and
the wave is not the entity.
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Distance-based waves

We have just seen that we can portray the height of the wing tips of our wood
pigeon with respect to the centre of its body over time in terms of a Sine wave. As
time passes, the wood pigeon raises and lowers its wings, and that is portrayed in
the graph. If the wood pigeon completes one “flap cycle” in 1 second, then the wave
has a frequency of one cycle per second, and a period of 1 cycle per second. As we
know, frequency and period relate to time. If the wood pigeon flew directly into the
wind and carried on flapping at the same rate, even if it were blown backwards,
the above graph would be the same, and the frequency and period would be the
same. If the pigeon held onto a branch and flapped its wings at the same rate,
without moving forwards or backwards at all, the graph would be the same, and
the frequency and period would be the same. This should all be obvious - it is the
raising and lowering of its wings with respect to the centre of its body over time
that is important and nothing else.

We will now complicate matters by considering the distance that the wood pigeon
travels while it flaps its wings. In other words, we will stop looking at the time for
each “flap cycle”, and instead look at the distance for each “flap cycle”. This concept
is straightforward if we imagine seeing a wood pigeon flying past us:
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The pigeon raises and lowers its wings as it travels along, and we will say that it
completes one flap cycle over 10 metres.
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We can portray this on a graph with the y-axis showing the height of the wing tips
above or below the pigeon’s centre, and with the x-axis as the distance of the
pigeon from the starting place. Note that the y-axis and x-axis are drawn to
different scales despite both referring to metres.
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Spatial frequency

Because the pigeon moves at a constant speed, the above graph is a Sine wave. It is
not a Sine wave that relates to time, but one that relates to distance. From looking
at the graph, we can see the state of the pigeon’s wing tips at any distance along
those ten metres. For example, when the pigeon had travelled 5 metres, its wing
tips were at the same height as the centre of its body. When the pigeon had
travelled 7.5 metres, its wing tips were at their lowest point. The graph does not
show us when the wing tips were at their lowest point though - it shows us only
where. There is no mention of time in this graph at all. Given that there is no
mention of time, we cannot deduce a frequency for the Sine wave - a Sine wave
that does not relate to time does not have a frequency. Frequency refers to the
number of cycles completed in one moment of time. This Sine wave has a distance-
based frequency, or what is generally called “spatial frequency”, where the word
“spatial” is the adjectival form of “space”, and “space”, in this sense, refers to
“distance”.

A distance-based wave has no reference to time, although it works in a similar way
to a time-based wave. In a distance-based wave, we pay attention to “cycles per
metre”, as opposed to “cycles per second”. Therefore, we have “spatial frequency”
as opposed to a time-based frequency. [Some people refer to “time-based
frequency” as “temporal frequency”, where “temporal” is the adjectival form of the
noun “time”.]
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Our wood pigeon completes one cycle in 10 metres. Therefore, the spatial
frequency of its distance-based wave is 0.1 cycles per metre.

Side note

Distance-based frequency, or spatial frequency, is sometimes called “wavenumber”
[as one word] or “wave number”. Given the number of terms you need to learn, |
think it is easier to remember the term “spatial frequency” than it is to remember
the term “wavenumber”. “Spatial frequency” is a much more descriptive term. To
complicate matters, some people say that “spatial frequency” and “wavenumber”
refer to different concepts, and some people say that they are the same concept.
There are also people who define wavenumber as “angle per metre” [as in the
portion of a cycle per metre] instead of “cycle per metre”. Different academic fields
have their own variations of the definitions, and it seems they never get together to
discuss them. [All of this is just for English-language maths - I do not know if other
languages have similar problems.] We will let other people argue amongst
themselves about definitions, and in this book, we will use the term “spatial
frequency” to mean distance-based frequency measured in cycles per metre.

Wavelength

As we know, time-based frequency is the number of cycles completed per second,
and period is the length in time of one cycle. Frequency is the reciprocal of period,
and period is the reciprocal of frequency. If a time-based wave has a frequency of,
say, 5 cycles per second, then its period is 1 + 5 = 0.2 seconds per cycle. A cycle
takes 0.2 seconds to complete. The distance-based equivalent to period is
“wavelength”. Wavelength is the reciprocal of spatial frequency. Wavelength is the
length of one cycle in metres. It is the distance from one place in the curve to the
place where the shape of the curve repeats. The name is slightly misleading as it is
not the length of the wave (which could go on forever), but the length of one cycle
of the wave.

If a distance-based wave has a spatial frequency of, say, 20 cycles per metre, then
its wavelength will be: 1 + 20 = 0.05 metres per cycle, or 0.05 metres, depending
on how we want to phrase the result.
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As we have already seen, our wood pigeon completes 1 cycle in 10 metres, so its
wave has a spatial frequency of 0.1 cycles per metre. The wavelength of the wave
is, therefore, 1 + 0.1 = 10 metres. The length of one cycle is 10 metres.

The most important thing to remember here is that wavelength refers to distance
and period refers to time. Wavelength and period are often confused by people,
even though the concepts refer to different ideas.

If our wood pigeon fell in some mud and flew past a wall, touching it with the tip of
one of its wings as it went past, it would draw out a distance-based wave:

From the markings left by the pigeon, it would be possible to calculate its spatial
frequency and its wavelength long after the pigeon had gone. Its wavelength would
be the distance from one cycle to the next; its spatial frequency would be the
reciprocal of that. It would not be possible, however, to calculate the pigeon’s wing
tip frequency, its period, or the pigeon’s speed from the markings - this is because
there is no record of anything to do with time.

The symbol for wavelength is the lower-case Greek letter “A”, named “lambda” and
pronounced “lam-da”, which is the Greek equivalent of the Latin letter “1” for
“lima”.

Note that it is much more common for people to talk about wavelength than it is for
them to talk about spatial frequency. [Conversely, it is more common for people to
talk about frequency that it is for them to talk about period.] One reason for this is
that in many situations, it is clearer as to what the wavelength is measuring than to
what a formula containing spatial frequency is describing.
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Period and wavelength are unconnected

We will say that our pigeon always flies at 10 metres per second through still air.
We will imagine that our pigeon flies against a 5 metre-per-second wind. If it still
flaps its wings at the same rate as before, its wings will still have the same
frequency (and therefore the same period). However, the wind will mean that the
pigeon flies only half the distance in one flap cycle. Therefore, its wavelength will
be halved - instead of one cycle being completed over 10 metres, it will be
completed over 5 metres. The wavelength will be 5 metres. One cycle takes the
same amount of time, but as the pigeon is travelling more slowly, it takes longer to
travel the same distance, so the cycles repeat at a shorter distance. The spatial
frequency will now be 0.2 cycles per metre — more cycles per metre are completed
now because the pigeon is moving more slowly.
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Perhaps counter-intuitively, if everything else remains the same, a slower speed
means a faster spatial frequency - more cycles are completed in the same distance.

If the pigeon flies against a 10 metre-per-second wind, and continues to flap at the
same rate as before, it will remain stationary in the air. The frequency of its time-
based wave will be the same as before, as will be the period. However, as the
pigeon is stationary in the air, the wavelength will be zero metres per cycle. The
distance between one cycle and the next is zero metres because they all happen in
the same place.
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A graph showing this is as so:
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The spatial frequency will be infinitely high. This is because all the cycles are
happening over an infinitely small distance - zero metres. It does not matter how
many cycles, or partial cycles, are completed (as long as there are more than zero
cycles), as this will always be the case. The spatial frequency is the number of
cycles completed per metre. Therefore, if any number of cycles is completed, the
spatial frequency will be a non-zero number divided by zero, which will be
infinitely high [or an undefined number, depending on how you learnt maths]. We
could also find the spatial frequency by knowing it is the reciprocal of the
wavelength. The number 1 divided by 0 is infinitely high.

This is a good example of how frequency and period, and spatial frequency and
wavelength have similarities, but are not necessarily connected to each other.

Distance-based wave attributes

The term “wavelength” is commonly mentioned when discussing waves such as
radio waves, but formulas for waves that relate to distance are much less common.
This is partly because analysis of waves is generally done on time-based waves.
Another reason is that it is often easier to think about wavelength than it is to think
about the actual wave itself. In the study of radio and sound, it is rare that we
would need to think about distance-based wave formulas.

A distance-based wave formula has the same basic structure as a time-based wave
formula: it has amplitude, spatial frequency, phase and mean level.
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Amplitude in a distance-based wave formula refers to the same idea as amplitude
in a time-based wave formula. For our wood pigeon time-based wave, the
amplitude referred to the height of the tips of the wings above or below the centre
of the pigeon’s body. In a distance-based wave, the amplitude refers to the same
thing. In a time-based wave, we are seeing how the wing tip height varies over an
amount of time. In a distance-based wave, we are seeing how the wing tip height
varies over a distance. [If the units of amplitude for a time-based wave were, say,
volts, then the units of amplitude for the corresponding distance-based wave
would still be volts.]

Mean level refers to the same units in a distance-based wave as in a time-based
wave, and in both cases will refer to the same units as the amplitude. As with a
time-based wave, the mean level for our pigeon example is not the height of the
pigeon above the ground - the y-axis shows the height of the wing tips with
respect to the centre of the pigeon’s body. The mean level still relates to the centre
of the pigeon’s body. If the pigeon could raise or lower its shoulders, it could alter
its mean level. However, the height of the pigeon above the ground is irrelevant to
the mean level for pigeons, even in a distance-based wave, and it plays no part in
the formulas or graphs.

Spatial frequency in a distance-based wave is analogous to frequency in a time-

owupen

based wave. Instead of being portrayed by the letter “f”, spatial frequency is

portrayed by the lower-case Greek letter “v” (called “nu” and pronounced “new”).
This is the Greek equivalent to the Latin letter “n” as in “number”. Confusingly, “v”
looks just like the Latin letter “v” for “victor”, and in some texts, it is literally
impossible to know which of the two is being used, especially if the letter is in
italics. It is not a good choice of symbol. Note that “v” is also used to refer to time-
based frequency in such academic subjects as optics. Spatial frequency is also
sometimes portrayed with the letter “k”, and it is worth noting that the letter “k” is

also sometimes used to refer to angular spatial frequency.

Phase in a distance-based wave formula refers to the same concept as phase in a
time-based wave formula. It indicates at what angle, or where in the cycle, the
wave started.

A time-based wave formula includes a multiplication by 360 or 2m, so that the Sine
and Cosine functions can operate on the time as if it were an angle, and have a
default frequency of 1 cycle per second. A distance-based wave formula needs the
same correction, so that the functions can operate on the distance as if it were an
angle, and have a default spatial frequency of 1 cycle per metre.
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Instead of the letter “t” for time, we use the letter “x” for distance. [Occasionally, in

the next chapter, we will use the letter “d” because we will be using “x” for another
purpose.]

The complexities of distance

Before we look at a distance-based wave formula, we need to think about the
meaning of distance.

At first glance, the idea of distance seems straightforward, but exactly which
distance we are measuring can be often be difficult to discern. We have to decide
from where, and to where, we are measuring. The idea of distance is often much
more complicated than the idea of time. In our pigeon example, we could say that

“w_n

x” will refer to the distance that the pigeon has travelled. Although this seems an
adequate meaning for “x”, in practice, it is too vague to be usable. For one thing, the
pigeon is not a single point - we have to know to where on the pigeon we are

measuring. Similarly, we have to know from where we are measuring.

For our pigeon example, we could say that “x” refers to the distance that the point
in the midpoint of the pigeon’s wing tips has travelled from a chosen starting place.
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“w_n

Another possible way we could define “x” is by saying it refers to the distance that
the tip of the pigeon’s beak has travelled from a chosen starting place.
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This is a different measuring point on the pigeon, and if we were literally observing
a real pigeon, the wave describing the situation would not be identical - the phase
would be slightly different. The tip of the beak on a pigeon is always about 15
centimetres ahead of the point in the middle of the wing tips. The pigeon’s wings
will be in a later state when the midpoint of the wing tips crosses the start line
than when the beak crosses the start line. Similarly, after a set distance, the wings
will still be in a later state for the mid-wing-tip measurement than for the beak-tip
measurement.

If we were measuring from the place where we first observed the pigeon, then it
would not matter whether we measured to the midpoint of the wings or to the tip
of the beak, as long as we were consistent for all our measurements. The wings
would be in the same state at the place where we first observed the pigeon, no
matter at which point on the pigeon we considered.
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There are countless ways to make measurements for our distance-based pigeon
wing tip wave. We could measure from a fixed starting place to the tail of the
pigeon, or even measure from a fixed starting place to a point that is always 30
centimetres in front of the pigeon. It is important to realise that we do not have to
measure to the point where the instantaneous amplitude of the wave is being
measured, and even if we said that we were going to do that, we would have to be
more specific in identifying that exact place. In our pigeon example, the
instantaneous amplitude is the height of the wing tips above or below the centre of
the pigeon’s body. That height could be measured at various places on the pigeon
because the (idealised) pigeon’s wing tips do not end in a single point.

—

However we measure the distance, the wavelength of the wave will be the same.
This is one of the reasons that it is easier to state the wavelength of a wave, than it
is to deal with distance-based wave formulas.

In our time-based wave from the start of this chapter, we had “t” refer to the time
since we first started observing the pigeon. I did this to make the explanation
simpler. If we are going to be using time-based and distance-based waves for the
same object, and we want the waves to be compatible, then we must use the same
idea for the “start”. For example, if we say that “xX” in the distance-based wave
refers to the distance that the midpoint of the pigeon’s wing tips has moved since
we started observing the pigeon, then “t” must refer to the time since we started
observing the pigeon. [As we are measuring time, we do not need to think about the
midpoint of the pigeon’s wing tips in the time-based wave after it has started - we
only need to know about the situation at t = 0.] If we say that “x” in the distance-
based wave refers to the distance between the midpoint of the pigeon’s wing tips
and a particular starting place, then “t” in the time-based wave needs to refer to the
time since the midpoint of the wing tips were at that same starting place. If we say
that “x” in the distance-based wave refers to the distance between a particular
start point and the tip of the pigeon’s beak, then “t” in the time-based wave needs
to refer to the time since the tip of the pigeon’s beak passed that particular start
point.

To summarise the above, the most important idea when referring to “x” in
distance-based waves is to decide what we are measuring and to be consistent
with the measuring. Similarly, “t” in time-based waves that refer to the same entity
should be measuring time from the same starting event.
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For our pigeon example, we will say that “x” refers to the distance from a chosen
starting place to the midpoint of the pigeon’s wing tips. This means that we will
need to change the meaning of our earlier time-based wave, so that “t” refers to the
time since the midpoint of the pigeon’s wing tips was first at that chosen starting
place.

With other types of real-world waves, we will have similar problems in specifying
exactly what is being measured as the “distance”.

Distance-based formula

A general formula for a distance-based Sine wave is, in radians:
“v=hs+ Asin (21 * vx) + ¢)”
.. where:

e “h”is the mean level. In our pigeon example, this is the average height of
the wing tips above or below the centre of the pigeon’s body. For our
pigeon, this will be zero, but for other types of waves, it might be non-zero.

e “A”isthe amplitude.

e “v”isthe spatial frequency in cycles per metre.

e “Xx”is the distance in metres, where the meaning of “distance” will usually
need to be clarified.

e “¢”isthe phase in the angle system we are using.

The formula for a distance-based Cosine wave is:
“v=hc¢+ Acos (2m*vx) + ¢)”
.. where “h.” is the mean level of the Cosine wave.

Our wood pigeon performs one flap cycle every 10 metres. Therefore, its spatial
frequency is 0.1 cycles per metre. It raises and lowers its wing tips to 0.25 metres
above and below the centre of its body. Its mean level is zero. We will measure the
distance from a chosen starting place to the midpoint of the pigeon’s wing tips. We
will say that the phase is zero radians, which means that the wings had a height of
zero metres and were about to rise when the pigeon crossed the starting place.

The pigeon’s distance-based Sine wave formula is, therefore:
“y=0.25 sin (21 * 0.1x)"
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If we want to know the height of the pigeon’s wings at any particular distance from
its starting point, we can enter the distance as “x” in the formula. For example, after
flying 2 metres from the starting place, the pigeon’s wing tip height will be:

0.25 sin (2m* 0.1 * 2)

= 0.25 sin (0.4m)

= 0.2378 metres, which is 23.78 centimetres above the centre of its body.

When the pigeon has flown 2.5 metres from the starting place, the height of its
wing tips above the centre of its body will be:

0.25 sin (21 * 0.1 * 2.5)

= 0.25 sin (0.5m)

=0.25*1

= 0.25 metres, which is 25 centimetres above the centre of its body. This is the
maximum height for its wing tips.

Connecting time and distance

Our pigeon has a Sine wave that shows its wing tip height at any time since the
midpoint of its wing tips passed the starting place:
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Our pigeon also has a Sine wave that shows its wing tip height at any distance from
the midpoint of its wing tips to the starting place:
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The two waves are completely independent of each other. If we just have one
wave, we do not have enough information to draw the other wave. We cannot
make any inferences from one wave about the other wave. The only way we can
connect the two waves is by knowing the speed of the pigeon. If we just have the
time-based wave, and we know the speed of the pigeon, then we can create the
distance-based wave. If we just have the distance-based wave, and we know the
speed of the pigeon, we can create the time-based wave. Similarly, if we have both
waves, we can calculate the speed of the pigeon. The speed cannot be deduced
from either wave on its own. The speed is not mentioned in either the time-based
formula or the distance-based formula.

If we have just the time-based wave, and we know the speed of the pigeon, then we
can work out the distance that the pigeon travelled during one cycle of its wing
tips. If one cycle takes 1 second, and the pigeon flies at 10 metres per second, then
one cycle also takes 10 metres to be completed. The length of one cycle is 10
metres.

If we have just the distance-based wave, and we know the speed of the pigeon,
then we can work out the time that the pigeon travelled during one cycle of its
wings. If one cycle takes 10 metres to be completed, and the pigeon flies at 10
metres per second, then one cycle is completed in 1 second.

If we have both waves, we can work out the speed of the pigeon. If one cycle takes
one second and 10 metres to be completed, then the pigeon must be travelling at
10 metres per second.
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To know the details of speed or the missing waves, we can use the standard
formula for distance, speed and time:
distance = speed * time

To make it more relevant to what we are doing, we can think of it as so:
distance of one cycle = speed * time of one cycle

That can then be thought of as:
wavelength = speed * period.

Wave speed

We can think about the speed of the pigeon, or we can think about the speed of the
wave. The speed of a wave is called the “wave speed”. The speed of a wave can be
thought of as the speed that the wave moves over a distance. However, this can be
a confusing idea for two reasons:

e First, ideally, we should not say that the wave exists outside of the formula
or graphs. It is better to say that real-world waves do not exist on their own.
Instead of the speed of the wave, we should really be thinking about the
speed of the pigeon’s fluctuating characteristic as that characteristic moves.
If we were not dealing with pigeons, we should still be thinking about the
speed of the relevant entity’s fluctuating characteristic as that characteristic
moves. However, it is often easier to ignore this rule and refer to the speed
of the wave. Note that ignoring the rule can make explanations quicker, but
at the expense of often making them much more confusing. A better, but
less succinct, term than “wave speed” would be “the speed of the entity’s
characteristic that is being described using waves” or maybe “entity speed”.
At the start of this chapter, I said that you should say that real-world waves
do not exist - waves appear only in graphs and formulas. The trouble with
maintaining this rule is that it is not adhered to, or even thought about, in
most explanations, which is why the study of real-world waves can be so
confusing. We end up with terms such as “wave speed”, which at first glance
seems obvious, but is much more complicated on closer inspection.

e Second, if we said that the wave did exist on its own, in this particular
example, the wave does not really move over a distance - instead, it is
extended over a distance. Therefore, we will need to think about the speed
that the wave is extended over a distance.
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If we ignore the first problem, we can say that the speed of a wave is the speed of
the end of the curve as it progresses over a distance.

In this example, the wave speed is the speed of the pigeon. The pigeon creates the
wave and the wave exists only where the pigeon is. If the pigeon moves at 10
metres per second, then the wave speed is 10 metres per second. The term “wave
speed” is mainly useful as an abstract idea when dealing with theoretical distance-
based waves. If we know the entity that the wave is describing, it is easier to think
of the speed of the entity than it is to think of the speed of the wave. The wave
speed and the speed of the entity that is portrayed by a wave will always be the
same. [If we were thinking of sound, the source of the sound might be stationary,
but the fluctuations in pressure that make up the sound (and would be portrayed
by waves) would be moving. The wave speed would be the speed of any particular
fluctuation in air pressure as it travelled.]

Distance-based and time-based waves

Not all entities that can be described with time-based waves can sensibly be
described with distance-based waves. This is because not all entities that can be
described with time-based waves are moving. If an entity is stationary, its
wavelength will be zero, and its spatial frequency will be infinite. [In case this is
not clear, its spatial frequency would be infinite, no matter how many cycles were
completed, because it would have moved zero metres. We would divide the
number of cycles completed by the distance (zero), and end up with an infinitely
high number. Even if it completed only 0.00000001 cycles, the calculation would
involve a division by zero.]

Technically, we could use distance-based waves for a stationary object, but there
would be no point as the graph would not tell us anything useful.
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For our wood pigeon, if it were standing stationary on a branch while flapping its
wings at its usual rate, its distance-based Sine wave graph would look like this:
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The formula for this graph can really only be described as so:
e Ifthe distance is 0, then “y” is every value between -0.25 and +0.25
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e Otherwise, “y” is undefined.

A common mistake that some people make is to think that the only waves in
existence are radio and sound waves, and therefore, to conclude that every time-
based wave has a corresponding distance-based wave. This mistake manifests
itself in their thinking that every wave has a wavelength. If we were being
pedantic, we could say that every wave does have a wavelength, and for stationary
waves, the wavelength is zero. However, I would say it is better not to think of
distance-based waves for stationary objects.

Whether it is possible to have an entity that can be described with a distance-based
wave, yet which has zero period for its time-based wave, is a philosophical point
that is above the level of this book. It would imply that an entity travelled a
distance without it taking any time to do so. Such a thing might be possible in some
branch of theoretical physics.
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Radio antennas

You will probably experience the connection between time-based waves and
distance-based waves most often when choosing antennas for radios. Antennas are
usually constructed to a size related to the wavelength of the waves that we want
the radio to receive or transmit. As radio waves move at a fixed speed (the speed of
light), this wavelength will be directly related to the time-based frequency of the
waves.

We will say that we want an antenna for a radio so that it can best receive a
broadcast at 100 MHz. The frequency of 100 MHz is a time-based frequency from a
time-based wave. Wavelength is the reciprocal of the spatial frequency. Therefore,
we have to find the characteristics of the distance-based wave.

Electromagnetic radiation, of which radio waves are a type, travels at a speed of
roughly 299,790,000 metres per second. [This is the speed of light]. We can also
say that the wave speed of radio waves is 299,790,000 metres per second.

We know that for a time-based wave of 100 MHz, 1 cycle takes 1 + 100,000,000 =
0.00000001 seconds (There are 7 zeroes after the decimal point). In other words,
the period is 0.00000001 seconds.

To calculate the wavelength, we can use the formula that connects distance, speed
and time:

distance = speed * time

.. or its wave version:

wavelength = speed * period

Therefore, we calculate:
wavelength = 0.00000001 * 299,790,000 = 2.9979 metres.

This means that the wavelength of an electromagnetic wave with a frequency of
100 MHz is 2.9979 metres.

If we wanted a very basic antenna for our radio, we could use a piece of wire that
was a quarter of a wavelength long. It would be 2.9979 + 4 = 0.749475 metres
(74.9475 centimetres) long. [The reason it would be quarter of a wavelength long
is based on the physics of antennas, and is too complicated a subject to discuss
here.]
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It is worth noting that a typical radio broadcast at 100 MHz would also involve
waves at frequencies either side of 100 MHz, unless it were just a single wave.
Therefore, an antenna would need to be able to receive a range of frequencies
around that frequency, and not just at that exact frequency. A piece of wire would
still be able to do this.

Radio antenna side note

Note that frequently in books on radio waves, you will see a drawing of a wave
meeting or leaving an antenna, such as this:
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Such a drawing is usually intended as a simple illustration. However, it has two
potentially confusing ideas. First, it suggests that a wave is an entity in itself - this
problem was explained at the beginning of this chapter. In the drawing, there is no
object creating the wave - instead the wave is travelling on its own. The second
problem with the illustration is that it makes it seem as if the significant attribute
of the wave meeting or leaving the antenna is the amplitude, when in reality, it will
be the frequency, period, spatial frequency, or the wavelength of the wave.
[Because the speed of light is constant, these are all connected, so each one is
proportional to the others].

Addition

As we already know, for some real-world entities that have a characteristic can be
portrayed with waves, if two or more waves exist at the same time and place, they
become added together. Obviously, this is not true for wood pigeons, but it is true
for sound or radio waves. We can add the time-based waves together or we can
add the distance-based waves together.
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Three types of wave

So far, in this book, we have seen three types of wave:
e Angle-based waves
e Time-based waves
e Distance-based waves

Time-based waves and distance-based waves are both essentially types of angle-
based waves, where there is a fixed scaling of the angle based on time or distance.

Circles

A time-based Sine wave can be thought of as portraying the y-axis positions of an
object as it rotates around a circle at any moment in time. Although a time-based
Sine wave might not literally be describing an object rotating around a circle, we
can think of it as doing so, because doing that helps us better understand the wave.
For our pigeon’s time-based Sine wave, although there are not literally any circles
involved, we can still think of the wave in terms of a circle. One of the advantages
in doing so is that it helps us understand the meaning of phase in the wave
formula.

When it comes to a distance-based Sine wave, thinking of the circle becomes
slightly more complicated. One way is to think of an object rotating around a circle
at the same time as the circle and the axes on which the circle is placed move at a
particular speed in a straight line. In this way, a distance-based Sine wave gives the
y-axis value of the object rotating around the circle when the circle itself is at
evenly spaced distances from the starting place. Note that that the axes must move
with the circle, and the circle must keep its position on the axes.



A Book About Waves. Part 2 © Tim Warriner 2022 [2022-12-17] 31

This is easier to portray with three-dimensional pictures:

If there is zero mean level, the centre of the circle will be on the origin of the axes.
If there is a non-zero mean level, the centre of the circle will be elsewhere, but it

will still be fixed to the axes.

As an example, we will look at this distance-based wave (in radians):
“y = 2 sin (21x)”

We will assume that the corresponding Cosine wave has zero mean level, and so
the circle is centred on the origin of the axes.

When “x” is 0.125 metres, the origin of the moving axes, and the distance-based
circle from which the wave is derived, will be 0.125 metres from their starting
position. At this place, the object has a y-axis value of:

2 sin (21 *0.125)

=1.4142 units.
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If we also knew the speed of the circle and the axes, we would be able to tell how
long they had been moving, and at what time the object was aty = 0.7071 units.

For distance-based Cosine waves, we do the same thing. The only problem is that

“u_n

we have “x” indicating the distance of the axes from the starting place, and we also
have “x” indicating the position of the object on the axes. Therefore, if we were to
consider the distance-based circles from which a Cosine wave is derived, it would

make sense to use a letter other than “x” in the formulas. When we have this
problem in the next chapter, we will use the letter “d” for distance.

A “distance-circle” is a way of portraying an aspect of a wave from a real-world
entity. Although the entity might not have any connection to circles at all, if we
have a distance-based wave that shows the fluctuating characteristic of an entity,
we can draw the circle from which that wave could have been derived.

Angular spatial frequency

If we consider time when examining an object rotating around a circle, we can have
frequency, which is the number of cycles completed per second, and we can have
angular frequency, which is the number of angle units (radians or degrees)
completed per second. These ideas translate to the time-based waves that describe
the y-axis and x-axis positions of the object - we can still talk about angular
frequency for a Sine wave and a Cosine wave, even though the idea of an angle is
slightly more obscure on a wave than it is on a circle.

As we know, when it comes to distance-based waves, there is spatial frequency,
which is the number of cycles completed per metre. As you might expect, we can
also have angular spatial frequency, which is the number of angle units completed
per metre. This idea is easier to contemplate on an object rotating around a moving
circle and axes than on a distance-based wave.
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Distance helices

In part one of this book, we saw time-based helix charts. In these, an object rotated
around a circle or a shape while moving down the time axis.
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We can also have distance-based helix charts. These have x and y axes, and a third
axis of distance. With the time helix charts seen in this book, the x and y axes have
been facing the viewer, while the time-axis has pointed away from the viewer.
With the distance helix chart, it is easiest to think of the x and y axes facing away
from the viewer with the distance axis moving away from the viewer. [I have
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drawn the “y” backwards to reinforce how the axes are facing away from us.]
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If the axes are drawn to the same scale as each other, the distance-based helix will
portray the literal position of an object as it rotates around a circle or shape while
that circle or shape moves over a distance.
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If we view the distance helix chart from the side with the y-axis pointing upwards
and the distance axis pointing to the right, we will see the distance-based Sine
wave. If we view the distance helix chart from the top with the x-axis pointing
upwards and the distance-axis to the right, we will see the distance-based Cosine
wave. [This is different from the time helix chart, where we need to view the helix
from underneath to see the time-based Cosine wave.] The viewing angles are
easier to see in this drawing of the helix from a slightly different angle:
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More pigeon thoughts

In our wood pigeon example, our theoretical pigeon always flies at 10 metres per
second and flaps its wings at a rate of 1 cycle per second. Its time-based wave
formula is:

“y=0.25 sin (21 * 1t)”

Its distance-based wave formula is:
“y =0.25 sin (2 * 0.1x)”

In reality, the faster a pigeon flaps its wings, the faster it will travel. If we make the
(slightly false) assumption that the speed of a bird’s flight is based solely on the
amount of air that its wings can push through, then the distance the pigeon travels
will be directly proportional to how quickly it can move its wings. We will say that
our pigeon flaps its wings twice as quickly (2 cycles per second), resulting in it
doubling its speed to 20 metres per second. Despite the time-based frequency and
the speed doubling, the spatial frequency will stay the same. The pigeon will still
cover the same distance with one flap cycle.
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[ts time-based wave will be:

“y=0.25sin (2w * 2t)”

... and its distance-based wave will stay the same as before:
“y=0.25sin (2m * 0.1x)".

This might seem counter-intuitive, but we can show it is true by using the formula:
wavelength = speed * period

For our faster pigeon, we have:
(1+0.1)=20%*(1+2)

.. which is:

10=20*0.5

.. which is:

10=10

... which shows that the idea is true.

The spatial frequency stays the same because one cycle of wing movement still
covers the same amount of distance. The pigeon is moving through those cycles
more quickly (a faster temporal frequency), but each cycle still only pushes the
pigeon the same distance onwards. One movement of the pigeon’s wings moves it
forwards by a particular amount, and it does not matter how fast that wing
movement is performed.

Acceleration
A similar situation occurs if our wood pigeon flies at an ever-increasing speed. For

the pigeon to move faster through the air, it must be flapping at an ever-increasing
frequency. Its time-based wave will have ever-faster cycles. It might look like this:
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However, the distance-based wave will still be the same as if the pigeon were flying
at any speed. This is because the movement of the pigeon’s wings pushes it
through the air by a particular amount. At any distance that the pigeon has moved,
the state of its wings will be the same. It does not matter at what speed our pigeon
moves, or whether that speed varies, the distance-based wave will always be the
same. This idea will be clearer when we look at the toy tortoise example in the next
chapter. [The toy tortoise’s head moves in and out according to the movement of
its wheels. If we move the tortoise more quickly, its head moves in and out more
quickly. Therefore, at any distance from the starting place, its head will be in the
same position - it does not matter how quickly or slowly we pushed the tortoise to
get there. The pigeon’s position and the extent to which it has moved its wings are
similarly linked together, but the connection is slightly harder to see because it is
travelling through air.]

Misguided generalisations

It is common for people to make incorrect generalisations about waves, such as “all
waves add together in this way” or “all waves behave in this way”. Such
generalisations are usually based on the idea that there are only two types of
waves: sound waves and electromagnetic radiation waves (light and radio waves).
Obviously, there are countless entities other than sound and electromagnetic
radiation that have characteristics that can be described using waves. By starting
with an example of a wood pigeon’s wings, it should be clear that it is risky to make
any generalisations about real-world waves. In Chapter 32, such generalisations
will seem even more misguided. Sometimes, you will read books about far more
complicated ideas than those in this book, where an author implies that they do
not know about other types of wave. It can be difficult to know if these are absent-
minded mistakes, or if the author really does not know about what many people
would say are the basics of waves. This is similar to how you can sometimes read
something about the Fourier transform by an author who appears not to
understand what Sine and Cosine are. Note that just because an author makes
misguided generalisations about waves does not mean that the other things they
say will not be useful or informative.
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Conclusion

In this chapter, we have seen both time-based waves and distance-based waves.
The two concepts are similar, but a time-based wave is usually easier to
understand. Whenever someone mentions “wavelength” when referring to radio,
light or sound waves, they are ultimately talking about distance-based waves, but
often, they might not acknowledge or realise the fact. Period and wavelength are
often mixed up, and this is often due to temporary absent-mindedness. It is easy to
find people who understand the concept of wavelength, but who are unaware of, or
do not understand, the concept of distance-based waves. This is usually because
there has never been any need for them to be taught about distance-based waves.

www.timwarriner.com
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Chapter 32: More real-world waves

In this chapter, we will look at examples of more complicated real-world waves.

A block, a spring and a board

For the next real-world example, we will imagine a block of wood connected to a
strong spring, which in turn, is connected to a rectangular board:

board.

block _
Spring

ML

Viewed side on, it looks roughly like this:
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If the spring is compressed, it will push back and return to its original size. The
spring is 11 centimetres long when uncompressed:
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The spring is 1 centimetre long when fully compressed:
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Now imagine someone pushing the block of wood through the top of a layer of

sand at a constant speed, with the board digging into the sand:
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As the block is pushed through the sand, the sand builds up against the board
causing the spring to be compressed:
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Eventually, the spring will be fully compressed:
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When the spring is fully compressed, the person pushing the block raises it slightly.
This raises the board and lets the sand slide off underneath as the block and board

continue to move forward.
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As the amount of sand pushing against the block decreases, the spring expands and

the board moves further away.
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When all the sand has fallen off the board, the spring will be at its full length:
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At this time, the person pushing the block lets sand build up against the board

again, and the cycle repeats.

A summary of what is happening is as follows:

The block is being pushed at a constant speed.

The build-up of sand causes the spring to be gradually compressed.

Once the spring is fully compressed, the block and board are raised slightly,
and the sand gradually moves off the board. When this happens, the spring
expands.

Once all the sand has fallen off, the board is pushed into the sand again, and
the process repeats.

By good fortune, the length of the spring at any particular time can be
calculated with the Sine function.

The spring completes one cycle of being compressed and then expanding in 10

seconds. We can portray the length of the spring over time using a time-based Sine

wave. The y-axis is the length of the spring over time as the device is pushed

through the sand. The y-axis units are metres.
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The graph looks like this:
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Note that the whole wave is centred around y = 0.05 metres (5 centimetres). This
is because the spring’s length never becomes negative. Its minimum length is 0.01
metres (1 centimetre). It fluctuates between 0.01 metres and 0.11 metres.

In the example of a wood pigeon in the previous chapter, the pigeon’s wing tip
wave referred to the up and down motion of the wing tips. In this example, the
spring-length wave refers to the in and out motion of the spring. For the pigeon,
the y-axis of the graph rose and fell with the rise and fall of the wings. With this
spring device, the y-axis of the graph rises and falls with the expansion and
contraction of the spring.

The behaviour of the spring can be portrayed using all the usual attributes of
waves. We will say that the time is the number of seconds since the centre of the
block passed a particular starting place. Note that this is an arbitrary place on the
block from which to measure. We could have chosen countless other places.

t=0
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The other attributes of the wave are as follows:

The amplitude of the wave is half the distance from the maximum length of
the spring to the minimum length of the spring - in other words, it is half
the distance from when it is being fully compressed to when it is not being
compressed at all. The spring’s maximum length is 11 centimetres; its
minimum length is 1 centimetre. Therefore, its amplitude is: (11 -1)+2=5
centimetres. If we had a longer spring, we would have a larger amplitude; if
we had a shorter spring, we would have a smaller amplitude. We will give
the amplitude in metres, so it will be 0.05 metres.

The frequency of the wave is the number of times the spring contracts and
expands in one second. The spring completes one cycle in 10 seconds.
Therefore, its period is 10 seconds, and its frequency is 0.1 cycles per
second.

If we think of a cycle of the wave starting when the spring is halfway
through an expansion, then we could think of the phase of the spring as how
far along the cycle it was when the middle of the block passed the starting
place. In this case, we will say the phase is zero, which makes things easier
for this example. This means that the spring is at half its length when it
starts, and it is in the process of expanding.

The mean level of the device’s wave is the average y-axis value over one
cycle (which is the same as the average over all time if the device moves
forever). As the maximum value is 11 centimetres and the minimum value
is 1 centimetre, the mean level will be 6 centimetres, which we will phrase
as 0.06 metres. Whatever the length of the fully extended spring, there will
always be a positive mean level because the length of the compressed
spring never becomes negative. The only way the mean level could ever be
zero is if the spring had a negative length when fully compressed. If we
wanted to change the mean level of the device, we would have to get either
a longer spring or a spring that compressed to a smaller size.
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The formula of the device’s time-based wave is:
“y=0.06 + 0.05 sin (21 * 0.1t)”
.. where:
e The mean level is 0.06 metres.
e The amplitude is 0.05 metres.
e The frequency is 0.1 cycles per second.
e The phase is zero, which means that the device started with the spring at
half its length and about to expand.
e “t”isthe time since the middle of the block passed the starting place.

When thinking of the device’s movement through the sand, it is important to notice
that at no time does any part moves backwards. Everything is moving forwards,
but at different rates. The block moves forwards at a constant speed, the board at
the front end of the spring moves forwards at varying rates. At no time does the
board move backwards. The spring’s length varies over time as it expands and
contracts, and the Sine wave reflects the spring’s length. It would be easy to think,
mistakenly, that the Sine wave meant something was moving backwards.

Distance-based wave

As the device is moving while the spring contracts and expands, we can also
portray its characteristics using a distance-based Sine wave. In this way, the wave
will be portraying the spring’s changes in length as the device moves. The distance
will be measured from the middle of the block of wood to the place at which the
device started:
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We could just as easily measure to where the spring is joined to the block, or the
other side of the block, or in fact, any place on the device (or not on the device) that
moved at the same rate as the block. However, we need to be consistent with the
starting event that dictated the meaning of the time in the time-based wave. For
example, if the time in the time-based wave referred to the number of seconds
since the tail end of the block passed a particular point, then the distance would
need to refer to the metres that the tail end had travelled since it passed that same
point.

The block of wood is the only part of the device that moves at a constant speed, so
all measuring points would need to be related to the block. As with the wood
pigeon, it does not particularly matter to where we measure on the block, as long
as we are consistent. It is also worth noting that the measurement does not have to
be to the same place as where the amplitude is measured. [l intentionally chose the
middle of the block instead of where the block was joined to the spring to make
this idea clear.]

We will say that the block of wood is being pushed at 5 centimetres per second,
which is 0.05 metres per second. Given that the period of the device’s wave is 5
seconds, this means that the wavelength is: 0.05 * 5 = 0.25 metres. One complete
contraction and expansion of the spring (one cycle) occurs over 0.25 metres. This
means that the spatial frequency of the wave of the device is 1 + 0.25 = 4 cycles per
metre.

The distance-based wave formula for the device is:
“y=0.06 + 0.05 sin (2m * 4x)”
.. where:
e The mean level is 0.06 metres, and refers to the average length of the
spring.
e The amplitude is 0.05 metres
e The spatial frequency is 4 cycles per metre.
o “x”refers to the distance in metres from the middle of the block to the
starting place.
e The phase is zero.
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The graph for this is as so:
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Calculations

From the time-based formula and the distance-based formula, we can work out the
length of the spring at any particular time, and we can work out the length of the
spring for when the middle of the block of wood is at any particular distance from
the starting place.

At, say, 1.1 seconds, the length of the spring will be:
0.06 + 0.05 sin (2 * 0.1 *1.1)
=0.09187 metres.

When the middle of the block of wood has been pushed 0.3 metres, the length of
the spring will be:

0.06 + 0.05 sin (2T * 4 *0.3)

=0.1076 metres.
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A toy tortoise

We will now imagine a child’s toy that looks like this:

N~

As the front wheels rotate, the head moves in and out. The length of the neck at any
distance or at any time can be calculated with the Sine function.

There are two significant sections to the mechanism of the toy. The first consists of
a small board, connected to the neck and the head. These are all fixed together. The
board has a slot down each vertical side.

board

d

e ———— P
neck

The second significant section consists of the two front wheels. They each have a
fixed internal peg that fits into the slot on either side of the small board. The pegs
can slide up and down the slots. As the front wheels rotate, the pegs slide up and
down the board, thus pushing it horizontally backwards and forwards.

For the sake of giving the toy a name, we will say it is a toy tortoise, despite how it
looks.
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The following pictures show the internal mechanism of the tortoise as it moves:

[Note that | made the mechanism slightly more complicated than it needs to be for
a child’s toy. This is so that the head moves in and out according to the Sine
function. If the toy used a more simple crank mechanism instead, the neck would
have a slightly different movement.]
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One rotation of the front wheels causes the neck of the tortoise to extend and
retract once. The tortoise needs to move 20 centimetres for this to happen.
Therefore, the wavelength is 20 centimetres, or 0.2 metres, and the spatial
frequency is 1 + 0.2 = 5 cycles per metre. We can portray the length of the exposed
neck using both time-based and distance-based Sine waves. In this example, we
will just focus on the distance-based wave.

The neck’s length varies from being 0.7 centimetres (0.007 metres) long to 5.2
centimetres (0.052 metres) long.

The amplitude of the wave will be half the distance from the maximum to the
minimum lengths:
(0.052 - 0.007) + 2 =0.0225 metres.

The mean level will be the average of the maximum and minimum:
(0.052 +0.007) + 2 =0.0295 metres.

The distance in the formula (“x”) will refer to how far the centre of the tortoise has
moved from its starting position. This is an arbitrary choice, and we could just as
easily have chosen a different point on the tortoise.

start
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We will say that the phase is zero radians. This means that when the centre of the
tortoise was at the starting place, its neck was 0.00295 metres long, and about to
become longer.

The formula for the length of the neck (the distance of the head from the body) as
the tortoise travels over a distance, will be:

“y=0.0295 + 0.0225 sin (21 * 5x)”
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The graph for this is as so:
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We can use the formula to calculate how far the head will extend from the tortoise
after the tortoise has travelled 0.23 metres:

0.0295 + 0.0225 sin (2w * 5 * 0.23)

=0.04770 metres.

Therefore, when the tortoise has travelled 0.23 metres, its head will be sticking out
0.04770 metres, which is 4.77 centimetres.

Note that it is irrelevant how fast the tortoise moves - its state will always be the
same at 0.23 metres. If the tortoise moves faster, the pegs in the front wheels will
move faster, and the in and out motion of the head will be quicker. If the tortoise
moves more slowly, the pegs will move more slowly, and the head will move more
slowly. The length of the neck is entirely related to the position of the front wheels,
and the position of the front wheels is entirely related to the distance that they
have travelled. It is irrelevant how quickly they travelled to get there. All of this
means that the speed of the tortoise does not affect the spatial frequency of the
neck’s length.

Speed is not relevant to this particular distance-based wave because the
instantaneous amplitudes of the wave and the distance travelled are locked
together by the nature of the mechanism. Speed’s irrelevancy to this distance-
based wave is more obvious in this example than in the wood pigeon example in
the previous chapter. When the wood pigeon flapped twice as fast, it travelled
twice as fast, but its spatial frequency remained the same. In this example, it is
clearer why that should be. Note that it is possible to have a distance-based wave
where the speed *is* relevant to the instantaneous amplitudes of the wave. For the
tortoise, we could change the mechanism to one controlled by an electronic circuit
and motor that moved the head in and out at a rate related to the speed of the
tortoise. Therefore, it is not always the case that the speed of a wave is unrelated to
its spatial frequency.
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Whether speed is relevant to a time-based wave depends on the nature of the
entity being examined. In this example, the faster the tortoise moves, the faster its
head will move in and out. Therefore, speed is relevant to the time-based wave in
this example. If the tortoise’s neck were controlled by an electronic circuit and
motor instead of the current mechanism, it would be possible to have the speed of
the tortoise be unrelated to the tortoise’s time-based wave. Whether speed is
relevant to a time-based wave or not, speed itself does not appear in either a
distance-based wave formula or a time-based wave formula, and it cannot be
deduced by just looking at either wave formula or graph. Speed is the factor that
connects the two types of waves, but it does not appear in either wave.

Whereas the pigeon and the block, spring and board produced pure waves, there
were no circular entities producing those waves. The pure waves were really
coincidences. In this example, the movement of the neck is controlled by the
circular movement of the wheels. Therefore, the Sine wave is directly related to a
circle. [Strictly speaking, the movement of the neck is controlled by the horizontal
axis of the wheel, so the movement is actually portraying a circle’s Cosine wave.]
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A toy train

We can have a toy steam train that works in the same way as the toy tortoise. With
the toy train, as the front wheels rotate, the mechanism raises and lowers the
chimney.

We will say that the moving parts of the toy train have the same dimensions as
those of the toy tortoise, and that train moves at the same speed as the tortoise. We
will say that the amplitude refers to the length of the chimney projecting from the
train. We will measure time from when the centre of the train passes a particular
place, and we will measure the distance from the centre of the train to that place.
We will say that at the starting place at t = 0, the chimney is half way out and about
to move further out, in which case, the phase will be zero radians. Given all of this,
the time-based and distance-based waves describing the length of the toy train’s
chimney will be identical to the waves describing the length of the toy tortoise’s
neck.
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A sliding corrugated metal sheet

In this example, we will imagine an eternally long piece of corrugated metal sheet
coming out of the machine that makes it, and then moving across a conveyor belt in
a straight line:

The corrugated metal sheet has a cross section that matches the shape of a Sine
wave. The height of the metal sheet is 10 centimetres or 0.1 metres. The distance
between the peaks is 20 centimetres or 0.2 metres.
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The metal sheet moves at 2 metres per second. To make the maths simpler, we will
say that the metal sheet is infinitely thin. [If it had a thickness, then that would
need to be taken into account in our calculations.]

We can use waves to describe the movement of the metal sheet, but doing so
requires more thought than with the previous examples. Our time-based and
distance-based waves will refer to the height of the cross section of the metal sheet
in relation to the conveyor belt it is sitting on. In other words, the y-axis values will
be the height of a particular place on the metal sheet above the conveyor belt.
Without needing to know how we are going to transfer the details of the metal
sheet to a time-based or distance-based wave, we can know the amplitude and the
mean level of the waves.
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The amplitude will be 0.05 metres. As we are measuring to the surface of the
conveyor belt, the mean level will be the same as the amplitude. It will also be 0.05
metres.
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This is all straightforward, but we have to decide to which part of the metal sheet
we are measuring at any time or place to obtain our y-axis values. If we choose to
draw a graph showing the heights of the front of the end of the metal sheet (as in
the part that precedes the rest of the metal sheet as it travels), we would find that
all the y-axis values would be the same.
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No matter at which time, or at which distance, we measure the height of the end of
the metal sheet, it will always be the same because we are measuring the same
part of the metal sheet. The end of the metal sheet has a y-axis value of 0.05
metres. The time-based wave would have a formula of “y = 0.05” because the end
of the sheet is always the same at all times. Similarly, the distance-based wave
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would have a formula of “y = 0.05” because the end of the sheet is always the same
for all distances. If we pick any point of the metal sheet as it moves, we will have
the same problem.

The solution is to measure the height of the metal sheet at a fixed location that is
not on the metal sheet, but which the metal sheet passes. We will do this by

measuring the height of the metal sheet as it passes a particular place:

Measuring P\a.ce
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When we do this, we can create meaningful wave formulas for the moving metal
sheet. We are interested in the sheet only where it passes the measuring place.
Before and after that point, the nature of the sheet is irrelevant to us. [We could
also measure the height of the metal sheet where it comes out of the machine, but
measuring it as it passes the post makes the measuring more analogous to other
types of waves such as sound waves.|

We know that the amplitude will be 0.05 metres - this is half the distance from the
peaks to the dips of the corrugated metal sheet. The mean level is 0.05 metres. The
wavelength of the metal sheet is 0.2 metres - this is the literal distance between
each peak or each dip. The speed is 2 metres per second. Therefore, the period is:
0.2 + 2 =0.1 seconds per cycle. The frequency is: 1 + 0.1 = 10 cycles per second.
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In the formula, “t” will be the time since the front of the metal sheet was exactly at
the measuring place:

measuring place

t=0

:
l

It is worth noting that our actual measurements will result in a mirror image of the
shape of the metal sheet. The measurements as drawn on a graph over time will be
the reverse of the actual metal sheet. This means that our measured Sine wave will

have zero phase. It will start with “y” at the height of the mean level and rising. Our
time-based wave looks like this:
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The time-based formula that shows the measurements at the measuring place is:
“y=0.05+0.05 sin (2@ * 10t)”

This wave formula shows the height of the metal sheet at the exact time that it
passes our measuring point. It is worth noting that we knew the frequency and the
period before we actually knew from when “t” was counting. [We also know the
wavelength before we have decided from where “x” in the distance-based wave
will be measuring.]

As an example of the time-based formula in use, we will enter the value of 0.17
seconds into the formula:

0.05 + 0.05 sin (2™ * 10 *0.17)

=0.002447 metres.

This means that 0.17 seconds after the front of the metal sheet has passed our
measuring post, the height of the metal sheet at the post will be 0.002447 metres
above the conveyor belt.



A Book About Waves. Part 2 © Tim Warriner 2022 [2022-12-17] 57

For our corrugated metal sheet, we would have a different amplitude if the peaks
and dips of the sheet reached higher and lower from the centre. Because the sheet
is lying on the conveyor belt, a different amplitude would also mean that the mean
level would be different. If the peaks and dips of the sheet were spaced differently,
or the sheet emerged from the machine at a different rate, the frequency would be
different. If the prevailing end of the sheet had been cut differently, the phase
would have been different.

The meaning behind a distance-based wave for our corrugated metal sheet
requires more thought. We know that the amplitude, phase and mean level will be
the same as for the time-based wave. We know that the wavelength of the metal
sheet is 0.2 metres. This means that the spatial frequency is 1 + 0.2 = 5 cycles per
metre. From that, we can make up a formula:

“y=0.05+0.05 sin (2m * 5x)”

“_n

.. where “x” is the distance in metres. However, we have to decide exactly what
distance “x” is measuring. The answer to this is that “x” is measuring the total
length of the metal sheet that has passed the measuring place. It is measuring the
distance from the prevailing end of the metal sheet to the position of the

measuring place:

Measuring p!a.ce
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The distance-based wave graph looks like this:
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As an example of the formula in use, we will enter 0.01 metres:
0.05 + 0.05 sin (2m*5 *0.01)
= 0.06545 metres.
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This means that when the prevailing end of the metal sheet is 0.01 metres past the
measuring place, the height of the metal sheet above the conveyor belt at the
measuring place will be 0.06545 metres.

Note that, as with the time-based wave, the distance-based wave is a mirror image
of the actual shape of the metal sheet.

Categories of waves

There are different ways in which we can categorise real-world entities that are
described using waves. These categories refer to the characteristic of the entity
that is being described using waves, and not to the wave formulas or the wave
graphs.

Transverse and longitudinal waves

One way to categorise the wave-like characteristics of moving entities is to say that
they are one of these two types:

e Transverse waves

e Longitudinal waves

A transverse wave is one where the changes in instantaneous amplitude (in other
words, the changes in the measured y-axis values) are at 90 degrees to the
direction of travel of the entity being described by the wave. To put this another
way, the characteristic of the entity that can be described using waves fluctuates in
a direction that is at 90 degrees to the direction of travel of the entity.

fluctuations

1\

o— direction
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The pigeon wing tip waves are transverse waves because the fluctuations are at 90
degrees to the movement of the pigeon. The wings move up and down while the
pigeon flies horizontally. If the pigeon somehow flew on its side, with one side up
and one side down, the waves describing it would still be transverse waves. If the
pigeon flew vertically upwards, its wings would move horizontally, and the waves
would still be transverse waves. It does not matter in which direction the pigeon
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flies, or from what angle we view the pigeon, its wings will always move up and
down, backwards and forwards, or in and out, at 90 degrees to the direction of the
pigeon’s flight. Therefore, the waves that describe the movement of the wings will
be transverse waves.

The movement of the toy steam train’s chimney is at 90 degrees to the direction of
travel. Therefore, the waves that describe its fluctuations are transverse waves.

The waves in the corrugated metal sheet example are also transverse waves - the
ups and downs of the metal sheet are at 90 degrees to its direction of travel along
the conveyor belt.

A longitudinal wave is one where the characteristic of the entity that can be
described using waves fluctuates in the same direction as the direction of travel of
the entity. [To put this in the more common (and slightly less pedantic) way to
describe longitudinal waves, the changes in instantaneous amplitude (in other
words, the y-axis values) are in the same direction as the direction of travel of the
entity being described by the wave.]
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In the block, spring and board example, the waves are longitudinal waves. The
length of the spring fluctuates in the same direction as the movement of the block
of wood.

The movement of the neck of the toy tortoise is in the direction of travel of the
tortoise. Therefore, the waves are longitudinal waves.

Whether a wave is longitudinal or transverse makes no difference to the
appearance of the resulting distance-based or time-based wave formulas or
graphs. Distance-based wave formulas just show how a characteristic fluctuates
over a distance, with no mention of which way it fluctuates. Time-based wave
formulas just show how a characteristic fluctuates over time with no mention of
which way it fluctuates. The toy tortoise and the toy train have the same time-
based and distance-based waves as each other, but the tortoise produces
longitudinal waves and the train produces transverse waves.

Transverse waves are usually slightly easier to visualise than longitudinal waves.
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Whether a wave is transverse or longitudinal is independent of from where we
view the entity producing the waves. For example, the pigeon wing tip wave will
always be a transverse wave - it does not matter if we view the pigeon upside
down or in the reflection of a mirror, it will still be a transverse wave.

The concepts of transverse and longitudinal waves do not apply as categories
unless the entity is moving. If the pigeon flapped its wings while holding onto a
branch, we would not be able to say that the wave describing it was transverse or
longitudinal. The terms become meaningless in such situations. There is no
movement with which the direction of the fluctuations can be compared.

Type A and Type B waves

From the pigeon wing example and the corrugated metal sheet example, we can
see another way to categorise real-world waves.

To understand these categories, we have to pay attention to what we will call the
“front” of the entity. By “front”, I really mean the prevailing part of the entity. The
entity, from which we are formulating waves, travels, and we are interested in the
outermost part. In many situations, the actual “front” can be slightly vague and
arbitrary. For our wood pigeon example, the “front” can be thought of as the wood
pigeon itself. The wood pigeon flies, creating the wave as it does so.
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The measurements for the wave itself are made on the pigeon, but there is no
single point where this has to take place. We can measure the height of the wing
tips above the centre of its body at any point along the length of the wing tip. When
we are dealing with distance-based waves, the distance in the formula referred to
the distance from a starting place to the middle of the pigeon’s wings. We could
just as easily have picked a different place on the pigeon to measure the distance,
and that place does not need to be where we make the wing tip height
measurements. From all of this, it might be clear that there is no exact single point
that we call “the place where the wave is” because, in this case, such an idea is
meaningless. [t is more correct to refer to “an area in which the measurements for
the wave can take place”. For the pigeon, we will call this area “the front”, and it
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can be thought of as the prevailing part of the “wave” (where the term “wave”
incorrectly suggests that the wave travels on its own).

On the moving corrugated metal sheet, the “front” is the prevailing edge of the
metal sheet. For the corrugated metal sheet, the “front” is one distinct point on the
sheet.

front
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On the block, spring and board, the “front” can be thought of as the whole device.
As with the pigeon, there is not an individual point that can be said to be where the
“wave” is, but there is an area where the outermost wave activity is taking place.
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On the toy tortoise, the “front” can be thought of as the whole tortoise:
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Note that the “front” does not necessarily match the place where we measure the
y-axis values for the wave graphs. For example, the pigeon’s y-axis values are
measured on the pigeon, but the sliding corrugated metal sheet’s y-axis values are
measured at a single place that the metal sheet passes. For the pigeon, the y-axis
value at the “front” is important for all time. For the metal sheet, the y-axis value at
the “front” is relevant only for the brief moment when the “front” passes the point
where the values are being measured. The “front” is the moving point or area of
the fluctuations that is furthest from the source of the wave.

In this categorisation system, we will call the two types of wave, Type A and Type
B. [These are not the standard names for these, but it makes everything easier to
use these names.|

Type A waves are waves for which the “front” is always changing in value. Type A
waves refer to entities that fluctuate at the “front”. To put this another way, Type A
waves are those where the only meaningful measurements are done at the “front”.
For transverse versions of this type of wave, as the “front” of the entity progresses
over a distance, it will “draw” out a wave in the air. Wave formulas and graphs for
Type A waves portray the values at the “front”. Pigeon wing tip waves; block, board
and spring waves; and toy tortoise waves are Type A waves.

Type B waves are waves for which the “front” always has the same value. Type B
waves do not fluctuate at the “front”. For Type B waves, the only meaningful
measurements are those done at a fixed place that the entity passes. Type B waves
act as if they have been slid as a whole from the source. A sliding corrugated metal
sheet is a Type B wave.

Another way of thinking of the two types is to pay attention to whether the source
of the wave is moving. For Type B waves, the source of the fluctuations is fixed in
place. The fluctuations slide out from the source. For Type A waves, the source of
the fluctuations is moving.

If you imagine that you could see a transverse wave moving, then major
differences between the two types are:
e Ifyou just watch the “front”, with a Type A wave, you will see every possible
y-axis value. With a Type B wave, you will see only one y-axis value.

e Ifyoustood in one place and peeked through a slit in a wall as the wave
went past, for a Type A wave, you would see only one y-axis value. For a
Type B wave, you would see every y-axis value.
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Of the two types of wave, Type A is the most straightforward for making time-
based formulas and distance-based formulas. The meaning of such wave formulas
is usually easiest to understand.

e The pigeon wing tip wave is a Type A wave and a transverse wave.

e The block, spring and board wave is a Type A wave and a longitudinal wave.

e The toy tortoise is a Type A wave and a longitudinal wave.

e The toy steam train is a Type A wave and a transverse wave.

e The sliding corrugated metal sheet is a Type B wave and a transverse wave.

e Sound waves, which I will discuss in the next chapter, are Type B waves and
longitudinal waves.

Ripples in an otherwise still pool of water are a good analogy for Type B waves
[although the behaviour of ripples is inconsistent with the sort of waves discussed
in this book]. The “front” of the ripple has the same shape as it progresses through
the water.
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A mechanical device

We will imagine a large mechanical frame that is about the size of a filing cabinet. It
has a metal bar on its face that rotates around a central point. The bar can be
extended to different lengths, and the bar can be fixed to any place on the frame’s
face. The frame is on wheels, which means that as the bar rotates, the whole device
can move at the same time. The device has a vertical line down its centre and a
horizontal across its middle. These can be thought of as axes. We will say that
when the device starts moving, the bar starts rotating. To keep the example simple,
we will say that the device gets up to speed instantly - it is either moving at a set
speed or it is stationary.

/\\
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Such a device can demonstrate every aspect of time-based and distance-based
waves. In this example, we will just look at the waves in a general way without any
actual measurements.

Time-based waves
First, we will look at the general formulas for a time-based Sine wave and a time-

based Cosine wave and examine every aspect in terms of the device. This is easiest
to contemplate if we view the device face on.
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Here it is shown with the bar set at a different position:

We will treat the vertical line down the centre of the device as the y-axis, and the
horizontal line as the x-axis.

The general formulas for the y-axis position and x-axis position of the end of the
bar at any one moment in time are as so:

y = hs + A sin (2ft + ¢)
X = h¢ + A cos (2tft + )

.. where:

e The mean level of the Sine wave represents the vertical position of where
the bar is fixed, and around which it rotates. The mean level of the Cosine
wave represents the horizontal position of where the bar is fixed. The mean
levels can be changed by fixing the bar to a different place on the face of the
device. We will say that the device can make the bar rotate no matter where
the bar is placed.

e The amplitude refers to the length of the bar. The amplitude can be changed
by extending or retracting the bar.

e The frequency is the number of revolutions per second made by the end of
the bar as it rotates. If the bar rotates anticlockwise, the frequency is
positive; if the bar rotates clockwise, the frequency is negative.

e The time is the number of seconds since the bar started moving. As the
whole device is also moving while the bar rotates, this is also the number of
seconds since the device started moving.



A Book About Waves. Part 2 © Tim Warriner 2022 [2022-12-17] 66

The phase is the starting angle of the bar. It is the angle of the bar at the
moment that the bar starts moving. As the device is also moving while the
bar rotates, this is also the angle of the bar at the time that the whole device
starts moving. We could alter the phase by fixing the bar so itis ata
different angle before it starts.

Distance-based waves

We will now look at distance-based waves. The device is on wheels and moves at a
constant speed. We can make general formulas for the y-axis position and x-axis
position of the end of the rotating bar when the device as a whole is at any distance

from where it started. As we are finding the x-axis and y-axis positions, we need a

symbol to indicate distance that is not “X”. Therefore, we will use the letter “d” as

the symbol for distance. The two formulas are as so:

“v=hs+ Asin (2m *vd) + §)”
“X=h¢+Acos (2m*vd) + $)”

.. where:

The mean level and amplitude refer to the same ideas as in the time-based
waves. The mean level is the position on the face of the device around which
the bar rotates. The amplitude is the length of the bar.

The phase refers to the same idea as phase in the time-based waves - it
refers to the angle of the bar at the time that the bar started rotating. This is
also the angle of the bar at the place that the entire device started moving.
The spatial frequency, “v”, is the number of rotations completed by the bar
per metre of travel of the device. If the bar rotates anticlockwise, this will be
positive; if the bar rotates clockwise, this will be negative. We can also
complicate matters by realising that if the bar rotates anticlockwise and the
whole device moves backwards, then the spatial frequency will be negative. If
the bar rotates clockwise and the whole device moves backwards, then the
spatial frequency will be positive.
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e We will say that “d” is the distance of the centre of the device from the place
where it started moving. We could just as easily measure to the back or
front of the device, but | am measuring to the centre to emphasise how the
distance does not need to be where the instantaneous amplitude

measurements are made. | am using “d” because “x” is being used to
represent the x-axis coordinate of the end of the bar.

Start

v
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Wave categories
The mechanical device produces transverse waves - the waves describe the

motion of the end of the bar, and the bar moves in circles at 90 degrees to the
direction of travel of the device.

> clf.rec:]:ion

The mechanical device also produces Type A waves. The place of measurement is
at the device itself, and so at the “front”.
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A beach ball and a beetle

As a more complicated type of wave, we will imagine a beach ball flying through
space in a straight line forever, but without rotating in any way. We will view it on
three-dimensional axes. The ball travels in the direction of the y-axis:

=
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We will say that a beetle is running around the ball at the same time as the ball flies
through space. The beetle runs at a constant speed around the ball. It runs along
the vertical centre of the ball, starting at the back, running forwards across the top,
down across the front, and then underneath to the back again:

Reetle
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If we view the ball from the side, the situation is slightly clearer. We have the
beetle moving around a circle:

.
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Reetle

Note how the z-axis points upwards and the y-axis points to the right. The circle as
a whole moves in the direction of the y-axis while the beetle rotates around it.

We will say that the ball has a diameter of 40 centimetres, which we will phrase as
0.4 metres. This means that its radius is 0.2 metres. The beetle can complete one
revolution of the ball in 10 seconds.

Time-based waves

The movement of the beetle can be portrayed using waves. As the beetle exists in
three dimensions, it is easiest to ignore the way that Sine and Cosine usually refer
to the y-axis and x-axis, and instead use Sine to calculate the position of the beetle
for all three axes. For this reason, we will not call the waves the “Sine wave” and

» o«

the “Cosine wave”, but the “z-axis wave”, “x-axis wave” and the “y-axis wave”.

=
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First, we will look at the wave that shows the z-axis position of the beetle on the
ball at any particular time. We will say that the time refers to the time since we
first starting observing the ball and the beetle. For a time-based wave, it is
irrelevant that the ball is moving.

We will say that when we first observed the ball, the beetle was at the centre back
of the ball, and it was about to move upwards. It then moved to the top of the ball,
down the front, and around. If we view the ball from the side with the z-axis
pointing upwards and the y-axis pointing to the right, we can use the Sine of the
angle of the beetle to give its z-axis position. In this way, the Sine function would
be finding the “height” along the z-axis. As we are dealing with time, we can use the
time multiplied by 21 and the frequency to find the beetle’s z-axis position at any
particular time. As the beetle is moving clockwise, the beetle has a negative
frequency. The beetle has a phase of m radians (180 degrees) because it is starting
on the left hand side. We will think about these ideas some more shortly.

=
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The formula that describes the beetle’s z-axis position on the ball in metres at any
particular time is:

“z=0.2sin ((2m*-0.1t) + m)”

.. where:

e The amplitude of the wave is 0.2 metres. This is the radius of the ball. If the
ball were a different size, the amplitude would be a different size. If the
beetle flew around the outside or inside of the ball without touching it, the
amplitude would be bigger or smaller.

e The frequency of the beetle, as in how many revolutions of the ball it makes
per second, is -0.1 cycles per second. If the beetle moved at a different
speed, the frequency would be different. The frequency is negative because
the beetle is moving clockwise.
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e The phase is mradians (180 degrees). The phase indicates the position of
the beetle on the ball at the time when we first started observing it. The
phase is the starting point of the beetle. A phase of m radians means that the
beetle started at the midpoint of the back of the ball, and continued moving
from there.

e The mean level is zero. As the formula relates to the beetle’s height with
reference to the centre of the ball, we cannot really alter the mean level for
the beetle without it seeming contrived. [A contrived way would be to have
the beetle move in the same circular path around empty space while the
ball was at a different height. For low mean levels, this would require the
beetle pass magically through the surface of the ball.]

Note that the above formula is the same whether the ball is moving or not. This
wave formula just shows the z-axis of the beetle on the ball at particular times.

We can rephrase the formula so that it has a positive frequency. I explained how to
do this in Chapter 11. The method in degrees is as follows: For a Sine wave, we see
how many degrees the phase is above or below 90 degrees, and we then set it to be
that same number of degrees below or above 90 degrees. We could also see how
many degrees it is above or below 270 degrees and do the same. For a Sine wave in
radians, we see how many radians the phase is above or below 0.51 radians, and
then we set it to be that same number of radians below or above 0.5 radians. We
could also see how many radians it is above or below 1.5m radians and do the
same.

As the phase in this example is 0.51 radians above 0.5 radians, we want the angle
0.5m radians below 0.5m radians, which is 0 radians. Therefore, we set the phase to
zero, and make the frequency positive:

“z=0.2 sin (2 * 0.1t)”

This is the same wave that we would see if we viewed the ball from the other side
with the z-axis pointing upwards, and the y-axis pointing to the left. If we are
concentrating on just the z-axis, it does not matter which way around we view the
ball, or which way around the beetle is moving because the z-axis values will be the
same. In this example, whether it has a positive or negative frequency does not
matter. We are interested in the beetle’s z-axis values at particular times, and its z-
axis values are unrelated to the place from which we observe the beetle.
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Time-based x-axis wave

If we look at the beach ball and beetle with the axes drawn, we can see that the x-
axis of the beetle is always zero. The beetle never moves left or right - it only
moves forwards.

—
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RBeetle

Therefore, the x-axis formula is:

“X - Ot"
... OT, just simply:
“X - 0"

If the beetle moved around the ball in a way that was not directly along one of the
axes, we would need to have formulas using Sine for all three axes.
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Time-based y-axis wave

Now, we will look at the wave that shows the y-axis position of the beetle on the
ball at any time since we first starting observing it.

We can calculate the formula for the y-axis by imagining we are viewing the ball
from the side with the y-axis pointing upwards. We can then portray the ball as a
circle with the y-axis uppermost and the z-axis pointing to the left.

b
rd

>
RBeetle
The Sine of the beetle’s angle would give the y-axis value of the beetle. As we are
dealing with time, the Sine of the time multiplied by 2w and the frequency will give

us the y-axis value of the beetle. The phase point of the beetle is at 1.5m radians
(270 degrees). As the beetle is moving clockwise, it has a negative frequency.

The y-axis wave formula will be as so:
“v=0.2sin (2m*-0.1t) + 1.5m)”

We can turn this into a positive-frequency wave. The current phase is 1.51 radians,
which means that we can leave the phase the same and just change the sign of the
frequency. The above formula rephrased to have a positive frequency is:
“v=0.2sin (2 * 0.1t) + 1.5m)”

It does not matter from which direction we view the beetle, or whether the
frequency is positive or negative, as the beetle will still have the same y-axis
values. The formula gives the y-axis position of the beetle over time, regardless of
from where we view the ball.
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Distance-based z-axis wave

We will now look at the distance-based waves for the beetle.

While the beetle moves around the ball, the ball moves in a straight line through
space. We will say that the ball is travelling at 10 metres per second.

We will create a formula for the distance-based z-axis wave. This will be a formula
that shows the z-axis values of the beetle at any distance from the start.
Immediately, we have the standard problem of needing to decide what “distance”
in this situation means. We need to know what it is that we are measuring. The two
most obvious choices we have are:
e We could measure the distance of the beetle from the starting place of the
beetle and the ball.
e We could measure the distance of the centre of the ball from its starting
place.

The trouble with doing the first of these is that the beetle moves forwards and
backwards with reference to the centre of the ball as the ball and beetle travel
through space. If we plotted the beetle’s z-axis position in relation to its distance
from the start, we would end up with a cycloid. [In other words, the curve would
be the same as if we followed a point on a wheel as the wheel rolled along the
ground.]

N 4

Therefore, it makes sense to use the second of these ideas. We will watch the
beetle’s z-axis position with reference to the centre of the ball, and consider the
distance of the centre of the ball from the place that we first starting observing the
ball.
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Viewed in three-dimensions, the distance is measured as so:

start

Viewed in two-dimensions, the distance is measured as so:

start ?\‘
& P2
«—— distance > >Y >

The centre of the ball moves at a constant speed through space, so the wave
describing the height of the beetle will be a pure wave.

[We could also have measured from the edge of the ball nearest to the place we
first started observing it, or from the edge furthest away. We could measure from
any place on the ball or even some fixed distance away from the ball. As long as we
are consistent, it does not matter. If we are measuring from the place where we
first started observing the ball, all of these will produce the same results. However,
if we are measuring from a place that the ball passed, then the phase of the beetle
will be different for each choice. We need to make sure that the time-based wave
matches the criteria for the distance-based wave. Therefore, if we were measuring
from the place where we first observed the ball, the time in the time-based wave
would need to count from when we first observed the ball. If we were measuring
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the distance of the centre of the ball from a fixed place, then the time in the time-
based wave would need to count from when the centre of the ball passed that
place.]

As the beetle moves at 0.1 cycles per second around the ball, its period is 10
seconds per cycle. Therefore, its wavelength will be:
10 * 10 = 100 metres per cycle.

Its spatial frequency will be:
1+ 100 = 0.01 cycles per metre.

The spatial frequency is how many revolutions of the ball the beetle makes per
metre covered by the centre of the ball. The wavelength is the distance that the
centre of the ball makes while the beetle completes one cycle. The spatial frequency
is based on two different but intertwined ideas, as is the wavelength. This makes
things slightly more complicated, but also allows us to use pure waves to describe
the situation.

Given that we will be referring to the waves as the “z-axis wave”, the “x-axis wave”,
and the “y-axis wave”, we will have to choose a symbol for distance in the formula

“«_n

that is not “x”. For this example, we will use “d” to refer to the distance in metres.
For the z-axis wave, we will view the ball with the z-axis pointing upwards, and the

y-axis pointing to the right.

=

B
~J \

Reetle

This means that the beetle is moving clockwise, so its spatial frequency is negative.
Its phase is m radians (180 degrees) because it is starting on the left hand side of
the ball as viewed in this way.
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The formula for the beetle’s z-axis position on the ball for when the centre of the

ball is a particular distance from the place that we first started observing it, is:
“z=0.2sin ((2m *-0.01d) + )"
.. where:

The amplitude of the wave is 0.2 metres. This is the radius of the ball and
the maximum z-axis value of the beetle.

The spatial frequency of the beetle, as in how many revolutions of the ball it
makes per metre of the ball’s centre moving, is —0.01 cycles per metre.

“d” is the distance of the centre of the ball from where we first started
observing it.

The phase is t radians (180 degrees). When we first started observing the
ball, the beetle was at the midpoint of the back of the ball, and was about to
move upwards.

The mean level is zero.

We can rephrase the formula to have a positive frequency as so:
“z=0.2 sin (2m * 0.01d)”

This is also the formula that we would have if we viewed the ball from the other

side. As we are concentrating on only the z-axis of the beetle, it does not matter

from where we view the beetle because the z-axis values will always be the same.

As an example of the formula in use, we will calculate the z-axis position of the

beetle for when the centre of the ball has travelled 0.7 metres from where we first

started observing it. The z-axis position will be:
0.2 sin (21 *0.01 *0.7)
= 0.008794 metres
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Distance-based x-axis wave

The distance-based x-axis wave is easy to calculate. The x-axis of the beetle on the
ball will always be zero, no matter at what distance the centre of the ball is from
where we first started observing it.

—
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The formula will be:

“x=0d"

.. where “d” is the distance in metres of the centre of the ball from where we first
started observing it. We could also give the formula as just:

“y = ("
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Distance-based y-axis wave

The distance-based y-axis wave will give the beetle’s y-axis position when the
centre of the ball is at particular distances from the place that we first started
observing the ball. To think about this most easily, we will view the ball from the
side, and imagine that the ball is a flat circle with the y-axis pointing upwards and
the z-axis pointing to the left.

Y
7

Beetle

The beetle is moving clockwise, and therefore, it has a negative spatial frequency.
Its phase point is at 1.5m radians (270 degrees). The y-axis wave formula is as so:
“y=0.2 sin ((2m*-0.01d) + 1.5m)”

We can give the formula a positive frequency:
“y=0.2 sin ((2m *0.01d) + 1.5m)”

When we are concentrating on just the y-axis, it does not matter whether we
consider the beetle moving clockwise or anticlockwise, as the y-axis values will be
the same.

Summary so far

Although this beetle example seemed straightforward at first glance, there were
several potential pitfalls in making up the formulas. Having three dimensions
makes the use of both Sine and Cosine less suitable. It is better to keep to one or
the other for all three axes. When it comes to distance, as with previous examples,
we have to decide from where, and to where, we are measuring the distances. It is
simplest to treat distances as measuring from the centre of the ball to where we
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first started observing the ball. You might have thought that we would need to
consider the angle from which we view the ball, but it turns out that this does not
matter - the z-axis, x-axis, and y-axis values of the beetle will be the same
regardless of the place from which we view the ball.

A second beetle

We can complicate the beetle and beach ball idea by adding a second beetle. This
beetle will start at the same place as the first beetle (the back of the middle of the
ball). It will then move to the far side of the ball, across the front, to the left, and
then to the back again. We will call this new beetle, “Beetle 2”, and we will call the
original beetle, “Beetle 1”.

For now, we will just look at Beetle 2 on its own. The movement of Beetle 2 is as so:

S
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RBeetle 2

We will say that Beetle 2 moves at the same speed as Beetle 1, and starts at the
same point, which is at the back of the ball. By this, [ mean that when we first start
observing the ball, both beetles are in the same place at the back of the ball.

Beetle 2’s time-based waves

Beetle 2’s z-axis values with respect to time will follow this formula:
“z=0t"

.. OT:

“z=0".
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This is because it never moves upwards or downwards. Its z-axis value is always
Zero.

To calculate Beetle 2’s x-axis formula, we can view the ball from underneath, and

imagine the ball as a circle with the x-axis pointing upwards and the y-axis pointing
to the right:

Reetle 2
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The phase point is at  radians (180 degrees). The frequency is positive because
Beetle 2 moves anticlockwise around this circle. The x-axis values with respect to
time follow this formula:

“x=0.2sin ((2m * 0.1t) + m)”

This choice of viewpoint is arbitrary. We could also have viewed the ball from any
angle, and the results would have ended up the same.
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To calculate Beetle 2’s y-axis values with respect to time, we will view the ball from
the top and imagine the ball as a circle with the y-axis pointing upwards and the x-
axis pointing to the right:

—
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Beetle 2 starts at 1.5m radians (270 degrees). The frequency is negative. The

RBeetle 2

formula is as so:
“y=0.2 sin ((2m * -0.1t) + 1.5m)”

After converting this to a positive-frequency wave, we have:
“y=0.2 sin ((2m * 0.1t) + 1.5m)”

Note how this is identical to the time-based y-axis formula for Beetle 1. This is
because both beetles start at the same point and move at the same speed, but along
different paths, to the highest y-axis point of the ball, and then back again. The y-
axis positions of both beetles match for all times [and for all distances].
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Beetle 2’s distance-based waves

The z-axis of Beetle 2 on the ball will always be zero, no matter at what distance
the centre of the ball is from where we first observed it:

RBeetle 2

Therefore, the distance-based Sine wave formula for the z-axis values will be:
“z=0d"

.. where “d” is the distance in metres from the centre of the ball to the place where
we first started observing the ball. We could also give the formula as just:

“y = 0"

The distance-based x-axis wave formula for Beetle 2 will be:
“x=0.2sin ((2m*0.01d) + m)”

The distance-based y-axis formula for Beetle 2 will be:
“vy=0.2sin ((2m*-0.01d) + 1.5m)”

After converting this to a positive-frequency wave, we have:
“vy=0.2sin ((2®*0.01d) + 1.5m)”

This is identical to the distance-based y-axis formula for Beetle 1. As with the time-
based y-axis waves, both beetles start at the same point and move at the same
speed, but along different paths, to the highest y-axis point of the ball, and then
back again.
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Both beetles

Now we will look at the movement of both beetles at the same time. Both beetles
start at the middle of the back of the ball, and move at the same speed. The beetles
meet each other again when they have both walked half way around the ball. To
keep everything simpler, we will say that the beetles do not collide with each other
or have to walk over each other. We will say that they can pass through each other
magically. This means that their movements can still be determined with the
formulas that we have.

The movement of both beetles is as so:

Reetle 1L 1

RBeetle 2\

The time-based formulas for Beetle 1 are:
“z=0.2sin (21 * 0.1t)”

“x=0t”

“vy=0.2sin (2m*0.1t) + 1.5m)”

The time-based formulas for Beetle 2 are:
“z = 0t”

“x=0.2sin ((2m * 0.1t) + m)”

“vy=0.2 sin ((2m * 0.1t) + 1.5m)”
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As an example of using these formulas, we will find the coordinates of each beetle
when the ball has been travelling for 7 seconds since we first starting observing it.

Beetle 1’s z-axis position on the ball will be: —=0.1902 metres.
Beetle 1’s x-axis position on the ball will be: 0 metres.
Beetle 1’s y-axis position on the ball will be: 0.06180 metres.

Beetle 2’s z-axis position on the ball will be: 0 metres.
Beetle 2’s x-axis position on the ball will be: 0.1902 metres.
Beetle 2’s y-axis position on the ball will be: 0.06180 metres.

Note how both beetles have the same y-axis value. The beetles are situated on the
ball roughly as shown in this picture:

Reetle 2

Reetle 1L

The distance-based formulas for Beetle 1 are:
“z=0.2sin (2m* 0.01d)”

“x=0d"

“v=0.2sin ((2®*0.01d) + 1.5m)”

The distance-based formulas for Beetle 2 are:
“z =0d”

“x=0.2sin ((2m*0.01d) + m)”

“vy=0.2sin ((2m *0.01d) + 1.5m)”
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We will find the coordinates of each beetle when the centre of the ball has travelled
25 metres from the place where we first starting observing it.

Beetle 1’s z-axis position on the ball will be: 0.2 metres.
Beetle 1’s x-axis position on the ball will be: 0 metres.
Beetle 1’s y-axis position on the ball will be: 0 metres.

Beetle 2’s z-axis position on the ball will be: 0 metres.
Beetle 2’s x-axis position on the ball will be: —=0.2 metres.

Beetle 2’s y-axis position on the ball will be: 0 metres.

The beetles appear on the ball as shown in this picture:

=

Reetle L

Reetle 2

Wave categories

By thinking of the basic ball, and how it travels in the direction of the y-axis, we can
categorise the types of waves.

=
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The z-axis waves for Beetle 1 are transverse waves - a z-axis wave indicates the up
and down motion of the beetle, and that motion is at 90 degrees to the direction of
travel of the beach ball. Beetle 2’s movement does not change for the z-axis, so
there is no z-axis wave to be categorised.

Beetle 1’s movement does not change for the x-axis.

The x-axis waves for Beetle 2 are transverse waves - they indicate the x-axis
movement of Beetle 2, which is at 90 degrees to the direction of travel. This
movement is not up and down, but away and towards the sides. The movement is
not in the direction of the movement of the ball, but at 90 degrees to it.

The y-axis waves for both the two beetles are longitudinal waves - these waves
indicate the motion in and away from the direction of travel of the beach ball.

The movement of both beetles can be categorised as Type A waves. The
instantaneous amplitude of the “front” changes as the waves move. The
measurements for the instantaneous amplitudes are made at the moving beach
ball.
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A beach ball machine

In this example, we will explore ideas that are more complicated. This example is
not intended to be an analogy for anything else, although there might be situations
where it could act as an analogy. The example is intended to increase your
awareness of more situations involving waves.

We will imagine a machine that magically creates the beach balls from the previous
example, complete with a Beetle 1 rotating around each one. To keep things

simple, we will say it does not create the Beetle 2s. The machine releases each
beach ball at evenly spaced intervals.

DO QO —
r=
We can also portray the beach balls with their axes:
- Z Z
Y, Dy, D, 2D
J ‘/ J >Y J
NEARNE

Among the countless ways in which such a machine could work, there are two

v

interesting ones:
e [t could produce each ball with the Beetle 1 in exactly the same place on the
ball at the time and place of creation.
e It could produce each ball with the Beetle 1 slightly further around the ball
than on the previous ball.

We will look at each of these ideas in turn.
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Beetle at the same place

If the machine releases each ball with the beetle at the same place, then each beetle
will rotate around its own ball, and the balls that were released earlier will have
beetles that are further progressed on their journeys compared with the balls just
released. This is shown in the following pictures with each line showing one

moment in time later than the line before. The beach balls are labelled “A”, “B”, “C”,
and “D”, with “A” being the first ball created, “B” being the second ball created, and

) —
& Q=

QO
SACROOLn

In this way, every existing ball has a beetle in a different place up until the location

where the beetles have completed one full revolution, when the brand new beetles
would be in the same state as the beetles at that location. There would be a single
location where every passing beetle would complete its first revolution.

For beach balls with beetles yet to complete one full revolution, we would be able
to tell when that ball had been released from the machine by examining the
position of the beetle on the ball [as long as we knew its frequency].
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Beetle slightly further around

If the machine releases each ball with the beetle slightly further around, and the
timing is carefully planned, then every beach ball that has been released will have a
beetle in exactly the same place. Every beach ball in existence will be in an
identical state.

(O ORONO,
OLOFON
OO

'@___.,

Thoughts

No matter how the beach balls are released, the waves produced from the z-axis
motion of the beetles will be transverse waves, and the waves produced from the
y-axis motion of the beetles will be longitudinal waves.

Z

If the balls were created with each beetle at the same position, then it would be
necessary to follow an individual ball on its journey to observe the fluctuations of a
beetle. In this way, the waves would be Type A waves.
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If the balls were created with the beetles slightly further around on each
consecutive ball, and every ball in existence was in the same state, then:

e Either we could observe one ball and its beetle, in which case, we would
have a Type A wave.

e Or, we could observe the positions of beetles as the balls they were on
passed a particular measuring place. In this case, as long as there were
enough balls going past, we would still create the same wave, and the wave
could be treated as if it were a Type B wave. [Ideally, there would be an
infinite number of balls passing at any one moment, or else there would be
gaps in the wave’s curve. This would mean that the balls would overlap
each other.] To record the correct phase, we would have to choose a
measuring place either at the machine or at a whole number of wavelengths
away from the machine. How these waves would differ from my earlier
definition of Type B waves is that the “front” in this case would always be
changing, unlike Type B waves where the “front” is always the same. In this
way, the waves are a mixture of Type A and Type B waves, and we will call
them “Type C” waves.

If we imagine that we could see the z-axis wave (a transverse wave) moving, then
either we could watch the “front” or we could peek through a slit in a wall as the
“wave” went past, and, as long as there were enough balls passing per second, we
would see every possible z-axis value.

Water ripples

By water ripples, I really mean water waves, but I do not want to call them waves
because they have very little in common with the sort of waves being discussed in
this book. Water behaves so differently from mathematical waves that mentioning
it in an explanation of waves is like mentioning seahorses in a book on equine
medicine.

[t pays to ignore water ripples almost entirely. However, some useful traits help in
visualising mathematical waves. In this way, water ripples are best thought of as
being an analogy for particular aspects of mathematical waves.

As I explained earlier in this chapter, ripples in an otherwise still pool of water
help in visualising Type B waves, where the “front” is unchanging, and the whole
“wave” looks as if it is being slid from the source.
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Water ripples can also be used to help visualise the concept of superposition. I
mentioned superposition in Chapter 13 on the addition of waves. Superposition is
a phenomenon related to particular types of waves including sound and radio
waves, where the instantaneous amplitudes of two passing waves become added
together if they exist at the same place and at the same time. As an example, if
there are two identical radio transmissions, and if you can receive them both at the
same time, and if the phases of each match (they are in phase) when you receive
them, then the signals of both will combine to produce a signal with a larger
instantaneous amplitude. If the phases are 180 degrees apart, the instantaneous
amplitudes will combine, but cancel each other out. The basic idea is that the
waves are added at the exact time and place that they meet each other.

As another example, if you hear a group of people shouting, they will sound louder
than if there were just one person shouting. The instantaneous amplitudes of the
sounds combine to produce a louder signal. You can experience this most
obviously if you ever walk near to a sports stadium.

The concept of superposition is used in noise-cancelling headphones. Such
headphones try to reproduce outside sounds with a phase that is 180 degrees
different, so that when the outside sound and the reproduced sound reach your
eardrum, they cancel each other out. The intention is that the reproduced sound
will have a phase 180 degrees different from that of the outside sound at the time
when both sounds reach your eardrum. If the timing is wrong, the sounds will not
cancel each other out.

Water ripples can be used to demonstrate two aspects of superposition. If you
disturb an otherwise still pool of water in two different places, the ripples from
each disturbance will cross over each other. The first significant idea is that where
the ripples cross, the ripples will be higher than the ripples from just one
disturbance. The second significant idea is that after the ripples have crossed each
other, they continue as if nothing had happened. These ideas occur in sound waves
and electromagnetic waves (light and radio waves), but in a more complicated way
- if you happen to be at the exact time and place where waves from two sources
meet, the instantaneous amplitudes of the waves will be added together.
Depending on the difference in phases, this might result in the signal being
stronger or weaker. Once the waves from different sources have passed each other,
they continue as if nothing had happened - the waves can pass through each other
unhindered.
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When it comes to superposition, there are big differences between water ripples
and sound and electromagnetic waves. Water ripples add to each other regardless
of whether anything is there to observe them. The only way to know that
electromagnetic waves add to each other is for them to be detected at that precise
time and place. For electromagnetic waves in the form of light, they can only be
detected if the photons hit the back of your eye or a detector, at which point they
cease to exist. Therefore, light waves from two different sources carry on as
normal after crossing, but only if they are not detected or seen. Sound waves add
to each other and then carry on as normal, but you would never observe this
unless you were in their path.

You can test that sound waves can pass through each other by talking to someone
who is talking to you at the same time. You can test that light waves can pass
through each other by shining a light at someone who is shining a light at you. You
can test that light waves add to each other by shining two lights at a single object
instead of one light.

It is easy to visualise a simplified version of superposition when thinking of ripples
in a pool of water. Apart from that, water ripples are not particularly useful for
learning about waves, and they can make things harder to understand. This is
especially so if you do not distinguish between ripples in an otherwise still pool of
water and the waves that occur in the ocean.

[t is important to note that not all waves succumb to superposition. This should be
obvious from the examples given so far of real-world waves.



A Book About Waves. Part 2 © Tim Warriner 2022 [2022-12-17] 94

A pendulum

A pendulum is a device consisting of a weight suspended by a rope or bar, which
has been attached to a fixed point above it. The proper name for the pendulum
weight is a “bob”. The bob swings from side to side due to gravity and momentum.
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A basic pendulum bob will travel less far on each swing, and eventually, it will stop
moving altogether. The pendulum bob in a grandfather clock will swing to the
same distance on each swing because it is assisted by the clock weight that is
constantly pulling downwards on the clock mechanism. For this example, we will
say that we have a clock pendulum that swings to the same distance left and right
on each swing. We will say that it continues swinging forever.

The distance from the centre of the bob to the vertical line directly underneath
where the pendulum is fixed can be portrayed using a time-based Sine wave
formula. We will say that if the bob is to the right of the line, there is a positive
distance; if the bob is to the left, there is a negative distance. The maximum
distance from the centre line will be the amplitude.

7 i
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For such a time-based Sine wave, we can create a Sine wave formula as follows:

The time will be the time since the pendulum first started moving. We will
say that the pendulum was started by the bob being held to the right at its
maximum positive distance, and then being released.

The amplitude will be the distance that the centre of the pendulum bob
reaches to the right or left from its centre point. We will say that this is 30
centimetres, which is 0.3 metres.

The frequency will be the number of times the bob does one complete
swing from left to right and back. Because our pendulum is part of a clock’s
mechanism, this will be exactly one cycle per second.

The phase will be 0.5 radians (90 degrees). This is because we are creating
the formula based on the pendulum starting at its right-most point and then
falling. This means that it starts at its highest positive value and then falls.
For a Sine wave, this means that it will have a phase of 0.5 radians. [If the
pendulum started with a phase of 0 radians, the bob would be at its lowest
point, and it would not have any momentum to move anywhere else.]

The mean level in this example will be zero. As we are measuring to the
vertical centre line underneath where the pendulum is fixed, a non-zero
mean level would not make any sense in this situation.

i/
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The distance of the pendulum bob in metres from its centre point, (where positive

distances mean it is to the right, and negative distances mean it is to the left) at any

particular time can be calculated with this formula:
“vy=0.3 sin ((2m * 1t) + 0.5m)”
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As an example of the formula in use, we will find out where the bob is at 0.675
seconds:

0.3 sin ((2m*1*0.675) + 0.5m)

= 0.3 sin (1.85m)

=-0.1362 metres.

This means that at 0.675 seconds, the bob will be 0.1362 metres to the left of the
centre point. It will be here:

i/

Unless the clock containing the pendulum happened to be moving, there would be
no point in creating a distance-based wave formula. For a stationary clock, the
wavelength is zero, and the spatial frequency is infinite.

Pendulums have several characteristics other than their wave producing abilities
that are of interest to physicists and physics teachers. For this reason, some
explanations of waves start with the wave formula for a pendulum as if a
pendulum were the simplest way to understand wave behaviour. In my opinion,
the position of an object rotating around a circle is a far easier concept to
understand than the position of a pendulum bob. Using a pendulum to introduce
the subject of waves also means that there is no mention of mean level, so gives an
incomplete description of waves.
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Waves in electronics

We will have a trivial look at waves in electronics. Having a vague knowledge of
waves in wires and cables helps in understanding some aspects of sending signals
using electromagnetic radiation, and vice versa.

In electronics, we can create waves by consistently altering the current passing
through a wire or cable. The result is called “alternating current” or “AC” for short.
Such waves have amplitude, frequency and phase. They can also have a mean level,
which, in electronics, can be referred to as the “direct current component” or “DC
component”.

A zero-mean-level wave will fluctuate between having a positive and negative
current. A negative current means that the current is moving in the opposite
direction to that of a positive current. When a wave has a mean level higher than
the amplitude, the current will always be travelling in one direction.

We can create time-based and distance-based wave formulas for current, but of the
two, time-based waves would be the most useful. The speed of electrical current
depends on the medium through which it is travelling. Different wires and cables
allow current to flow at different speeds, and the speed will always be slower than
the speed of light.

There are some similarities between electrical waves and electromagnetic waves,
but also some major differences. [We will look at electromagnetic waves in Chapter
34.] Electrical waves can have frequencies from zero cycles per second upwards,
where a frequency of zero cycles per second is just a constant current or voltage.
Conversely, for electromagnetic waves, there is a minimum frequency at which
they can be easily created, and the concept of mean level does not apply.

Electrical waves of different frequencies can co-exist in the same wire or cable at
the same time without interfering with each other. In this way, they are consistent
with the idea that different frequencies do not mix.
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Conclusion

In this and the previous chapter, we have seen several different entities that have
characteristics that can be portrayed by waves. Every example had a different type
of characteristic. Although some of the examples might seem contrived, they
should open your mind up to the possible forms that wave behaviour can take.
They should also make sound waves and electromagnetic waves slightly easier to
visualise.

www.timwarriner.com
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Chapter 33: Sound

In this chapter, we will briefly look at the phenomenon of sound. One could easily
write several books about sound, so this chapter will just be a quick introduction.

Sound is not an entity in its own right. Instead, it is the repeated variations of
pressure caused by, and emanating from, the vibrations of a source. These
pressure variations can travel through many materials, but are most commonly
experienced through air. Mammals and birds, among other animals, primarily
detect the pressure variations in the air with their eardrums. From the point of
view of these animals, the air and the sound are inseparable. Although pressure
variations adhering to the characteristics of sound can travel through media other
than air, we only detect the sound unaided with our ears if the last step is through
the air. We can be aware of vibrations without using our ears, but we are incapable
of distinguishing them to anywhere near the same level.

Mammals and birds, among other animals, are capable of distinguishing sounds by
the frequency and amplitude of the vibration.

Sound can travel only through a medium [in other words, a gas, a liquid or a solid,
and not a vacuum] because it relies on the changes in pressure. To be more
pedantic, the phenomenon of sound is the changes in pressure that travel through
a medium. Given that the phenomenon of sound consists of the changes in
pressure within a substance, there must be a substance that can be subjected to
changes in pressure for the phenomenon to exist.

In this chapter, we will mainly focus on sound in air.
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A sound example

Imagine that a flying bee buzzes briefly in an open room. The sound it makes is
from the vibrations of its muscles and wings producing a barrage of constantly
increasing and decreasing air pressure. These alterations in air pressure emanate
from its wings as expanding spheres or “shells” that disperse in every direction.
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The energy from the vibrations transfers outwards through the air in a similar way
to ripples expanding outwards in a pool of water. However, the vibrations travel in
every direction, not just in a two-dimensional plane as water ripples do. As the
vibrations travel outwards, the energy caused by the initial bee wing vibration
becomes weaker as it is spread out over a much larger volume. Eventually, the
energy left becomes too weak for an average person to detect with their ears.

The ripples of air pressure from the buzzing may bump into objects other than air,
for example walls, doors or windows. In which case, if there is enough energy, the
vibrations will travel through the objects, and those objects will in turn alter the
air pressure in other places. The sound might be absorbed into the object, or it
might bounce off and back into the room. If the sound is loud enough and the room
is big enough, these may be heard as echoes. In these ways, the original sound will
become muddled with the new sources.

There are two important ideas to know about sound:

o First, the air itself does not move. Instead, the changes in pressure move
through the air. The air returns to normal after the changes in pressure
have travelled through it. Of course, if the sound occurs within moving air,
then the air moves at the same time as the sound travels through it.
However, the sound does not cause the air to move. The changes in
pressure move through the air in a way that is analogous to someone
pushing the back of a spoon down across the top of a large dish of jelly
[jello] - the jelly becomes compressed, but stays where it is. After the spoon
has passed, the jelly returns to its original state.
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e Second, at no point do the changes in pressure move backwards [unless
they become reflected]. The “wall of air pressure changes” moves ever
outwards at a set speed from the source.

Details of sound

The meaning of the wave derived from a sound is not as obvious as the wave
derived from, say, a pigeon’s wing tips. With sound, the fluctuations in air pressure
are in the same direction as the movement of the sound. The waves from sound
through air are longitudinal waves. [Sound travels as a longitudinal wave in air, but
as either a longitudinal wave or a transverse wave through solids. In this chapter,
we will focus on sound travelling through air.]

The movement of sound is analogous to certain aspects of the block, spring and
board example combined with aspects of the corrugated metal sheet example. To
explain what I mean, we will look at the bee from the side to see the radiating
variations in sound pressure. To make things easier, we will imagine the variations
in pressure as being in straight lines instead of curved lines, and we will
concentrate on one section of the air pressure fluctuations.

In the following pictures, closer lines indicate an area of higher pressure; lines
further apart indicate an area of lower pressure. The lines are just a guide to how

the pressure might look. As the sound is emitted from the bee, the areas of
pressure maintain their order and move away from the bee:
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The bee is the source of the sound. From the bee come variations in pressure. The

variations in pressure remain in the same pattern once they have left the bee. The
variations in pressure travel through the stationary air, essentially moving their
energy from one “piece” of air to the next. This means that a pattern of sound
pressure that was originally at the source (the bee) will, after some time, be further
away from the bee. In this way, sound is a Type B wave - it is as if the fluctuating
characteristics are being slid away from the source. If we just measured the
pressure at the “front” of the wave (as in the very first pressure change to move
out from the source), we would see the same value for all time [although in
practice, the sound would fade as it moved further away from the source.] The only
way to collect sensible measurements from the ever-expanding shells of pressure
changes would be to measure them at one particular place as they pass by.

Meas u.ri.r:ﬂ
Place

5
& |11 1100811111110 —

The earlier example of a block, a spring and a board is analogous to the changes in

air pressure at the time they are created from the source. After that moment, the
sound more closely resembles the corrugated sheet of metal.

Another, slightly better, analogy is someone pushing various densities of cotton
wool into a pipe. Once the cotton wool has been put into the pipe, the variations in
density will remain the same as the long sausage of cotton wool progresses down
the pipe. The density of the cotton wool at the far end of the sausage of cotton wool
will remain the same. However, the density of cotton wool as the sausage of cotton
wool passes a particular point will vary.
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To make the analogy slightly more accurate, we can imagine that the person is
standing in a place surrounded by pipes heading off in every direction away from
them, and every pipe has the same types of cotton wool put into it at the same
time:

In such a case, any measuring devices that are the same distance away from the
person would detect the same density of the cotton wool.

Another analogy, which emphasises how the sound requires a medium through
which to travel, is a long line of people passing differently sized boxes to each
other. The order of boxes remains the same once the boxes are in the line of
people. The box at the furthest end will always be the same size. To measure the
differences in box size, it would be necessary to stand in one place and observe the
boxes going past you. You could not measure the differences in box size by just
observing the outermost box.
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In this way, we can think of the size of the box held by any one person at any
moment in time as being analogous to the air pressure at any place and time. In the
same way that the people do not move, only the boxes, the actual air does not
move, only the air pressure. At no point do the boxes move backwards along the
line - this matches how the changes in air pressure do not move backwards down
the line. The boxes vary in size in the same way that the air pressure varies from
place to place. The sizes of the boxes represent the instantaneous amplitudes of the
wave formulas or graphs that describe the situation.
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Graphs and formulas

We can draw a time-based sound wave graph showing the fluctuations in sound
pressure for our bee as they might appear in reality. These air pressure
fluctuations are observed at a place that the sound passes over a length of time.
This place could be at the very source of the sound or at any place that the sound
passes, but must be at a fixed position.

Measu.rir:g
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To make things simpler, we will imagine that the bee makes a sound that is a pure

wave of 200 hertz. In reality, the strength of the sound pressure fluctuations would
reduce as the sound travelled away from the bee. For this example, we will say that
they stay the same.

Time-based wave

The air pressure originating from our (hypothetical) bee, as measured at a
particular measuring place over time, can be portrayed with this formula:
“y=101,325+0.02 sin (21 * 200t)”

.. where:

e “y”isthe total air pressure in pascals at any moment in time as measured at
the measurement place. [Pascals are the standard unit of air pressure. One
pascal is one newton per square metre. The unit “pascal” has a lowercase
“p”, but its abbreviation, “Pa”, has an uppercase “P”.]

e 101,325is 101,325 pascals, which is the typical atmospheric air pressure at
sea level. [To keep things simple, we will say that everything is happening at
sea level.] This is the mean level of the formula. The air pressure will
fluctuate around this level.

e (.02 pascals is the amplitude of the formula. It is the maximum and
minimum air pressure created by the bee. This would be a fairly loud bee.

e 200 cycles per second is the frequency of the tone created by the bee.
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e We will say that the phase is zero. The phase refers to the pressure at the
place of measurement at t = 0. A phase of zero radians means that the
instantaneous amplitude was zero at that time and about to rise.

The graph for the formula is as follows. So that the graph can fit on the page, the y-
axis starts at 101,324.97 pascals.
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In practice, the pressure fluctuations of sound are usually measured in terms of
how much the pressure differs from the surrounding air pressure. Sound is usually
thought of as “sound pressure” (as opposed to just “pressure”). Another term for
this is “acoustic pressure”. Given that, the formula for the time-based wave would
no longer mention the surrounding atmospheric air pressure. It would just
concentrate on the deviation from the atmospheric air pressure.

The time-based wave formula would, therefore, become:
“y=0.02 sin (21 * 200t)”
.. where:

“«__n

e “y”isthe sound pressure in pascals at any moment in time as created by the
bee, and as measured as the sound passes a particular place.

e The mean level is zero. We are measuring how much the pressure differs
from the surrounding air pressure, so the mean level will be zero. If we
somehow altered the pressure of the air through which a sound travelled -
perhaps by having the source of a sound and the detector contained in a
large pressurised container - then the mean level would still be zero
because sound pressure is the difference in pressure from the surrounding
pressure.

e The amplitude is 0.02 pascals.

e The frequency is 200 cycles per second.

e The phase is zero.
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The graph for this is:
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In this graph, the mean level is zero. The y-axis values fluctuate around zero
pascals. A negative y-axis value means that the air pressure at that time is less than
the surrounding atmospheric air pressure; a positive y-axis value means that the
air pressure is higher than the surrounding atmospheric air pressure.

It is common to see the amplitude, or in other words, the sound pressure, given in
terms of decibels. [I explained decibels in Chapter 15]. This means that the sound
pressure is given as the base ten logarithm of the ratio between the square of the
measured sound and the square of the standard value with which it is being
compared. Sound pressure is a “root power” value - therefore, it and the value
with which it is being compared must be squared before one is divided by the
other. [If this does not seem reasonably straightforward, then re-read the relevant
section of Chapter 15.] The standard value with which sound pressure is compared
is 20 micropascals. This is considered the lowest sound pressure that humans can
hear. The abbreviation “dB SPL” refers to decibels comparing with a sound
pressure of 20 micropascals. A sound pressure of 20 micropascals is equal to 0 dB
SPL. A sound pressure of 0.02 pascals is equal to 6 dB SPL.
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Distance-based wave
We can also formulate a distance-based wave for the sound from our bee.

The speed of sound in air at 20 degrees Celsius is about 343 metres per second. To
keep things straightforward, we will say that the air temperature in our example is
20 degrees Celsius. We can calculate the wavelength of the sound using:

distance = speed * time

.. OT:

wavelength = speed * period

.. which, because frequency is “1 + period”, we can phrase as:

wavelength = speed + frequency

With our knowledge that the bee makes a 200 Hz sound, we have:
wavelength = 343 + 200
.. which is 1.715 metres.

The spatial frequency is:
1+ 1.715 = 0.5831 cycles per metre.

We have calculated the wavelength of the wave, but we are yet to create the
distance-based formula. Creating a distance-based formula for sound requires a
definition of the distance. We need to decide what the distance will be measuring.
For this example, we will say that the distance in the formula will be the distance
from the place where the measurements are taking place to the prevailing edge of
the sound. In other words, we will measures the “length” of sound that has passed
the place of measurement. This measurement idea is the same as that of the
corrugated metal sheet example in the previous chapter. [We will think more
about this idea later.]

Measurirﬂ
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For our first formula, we will look at the total air pressure. The formula for our
distance-based wave is:

“vy=101,325+0.02 sin (21 * 0.5831x)”"

.. where:

“w__»

e “y”isthe total air pressure in pascals at the measurement place when the
prevailing “front” of the sound has travelled “x” metres past the
measurement place.

e 101,325 pascals is the typical atmospheric air pressure at sea level. This is
the mean level of the formula.

e The amplitude is 0.02 pascals.

e The spatial frequency of the sound is 0.5831cycles per metre.

e “x”is the number of metres that the “front” of the sound has travelled past
the measurement place.

e The phase is zero.

The wave looks like this:

h

101,325-03 1
101,325-02 1
101,325-01 +
101,325.00 1
101,324-99 1
101,324-98 +
101,324-97% 1

2 distance
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Now, we will look at the formula for the sound pressure (acoustic pressure)
fluctuations. This means that we concentrate only on how much the sound from
the bee makes the air pressure differ from the surrounding atmospheric pressure.
The distance-based wave is:

“y=0.02 sin (27 * 0.5831x)”

.. where:

“«__n

e “y”isthe sound pressure (or acoustic pressure) in pascals when the
prevailing “front” of the sound has travelled “x” metres past the
measurement place.

e The mean level is zero - the fluctuations are around zero.

e The amplitude is 0.02 pascals.

e The spatial frequency of the sound is 0.5831cycles per metre.
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“ "

o is the number of metres that the “front” of the sound has travelled past
the measurement place.
e The phase is zero.

The new distance-based graph looks like this:
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Note how the formula and the graph refer to the sound pressure at a particular
place when the prevailing “front” of the sound is so many metres past that place.
The result of the formula is a sound pressure. A negative result from the formula
means that the measured air pressure is lower than the surrounding atmospheric
pressure. [If someone has not been paying attention, a possible source of confusion
surrounding waves derived from sound is to believe, mistakenly, that the sound is
moving backwards. From the examples in the previous chapter, it should be clear
why this is wrong.]

One significant difficulty in our formulation of a distance-based wave is that it
relies on knowing the distance that the prevailing “front” of the sound has
travelled past our measurement point. When we had a corrugated metal sheet, we
would have been able to measure the length of the sheet that had passed the
measuring place. In our sound example, we cannot see the prevailing “front” of the
sound, and it would be very difficult to measure consistently how far away it is.
One way would be to have a series of air pressure sensors laid out in a line after
the measuring point. They would be able to detect where the “front” of the sound
was, but it would be difficult to have a high level of accuracy or to measure large
distances. Alternatively, we could approximate where that “front” is at any time by
assuming that the “front” travels at a constant and known speed. This would not
work if it were windy or if the temperature were not constant. For this reason, a
distance-based wave formula for sound is more likely to be a theoretical formula to
demonstrate a point, than one literally created by measurements. This is another
example of how it is easier to talk about wavelength than it is to talk about
distance-based wave formulas. [It is worth noting that we calculated the
wavelength in this example by assuming that the sound travels at a particular and
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constant speed. Therefore, even the wavelength in this example might not be
completely representative of reality.]

Measured waves

The above time-based and distance-based waves refer to the air pressure and
sound pressure as measured. They rely on an accurate device that can measure in
pascals. In practice, a sound is more likely to be “measured” with a microphone.
The measurements will not be in pascals, but in the current or voltage that
fluctuate according to the mechanism of the microphone and the electronics in, or
connected to, that microphone.

The easiest way to measure the fluctuations of sound pressure (as opposed to air
pressure) from a sound is with a microphone connected to an electrical circuit.
[Remember to pay attention to when we are talking about “air pressure” and
“sound pressure” - the first is the literal atmospheric pressure, while the second is
the difference in the atmospheric pressure caused by the sound]. A very basic
microphone consists of a diaphragm that moves slightly in and out according to the
changes of air pressure that meet it. The diaphragm is connected to a magnet that
moves with it, and the movement of the magnet induces an electric current in a coil
of wire wrapped around the magnet. The fluctuations in the created current are
roughly proportional to the fluctuations in the sound pressure. The current will
fluctuate in accordance with the fluctuations of air pressure, but it might not
fluctuate to the same extent as the fluctuations of air pressure. Therefore, we will
have an adequate representation of the sound for many purposes, but it might not
necessarily be an adequate representation of the sound pressure. The
representation of reality in graphs and formulas is only as good as the accuracy
and appropriateness of our measuring device.

Whereas the previous waves concerned the changes in air pressure and sound
pressure over time and distance, the microphone’s detection of the sound will
produce a wave based on the changes in electrical current over time and distance.
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For a time-based wave measured with a simple microphone, the formula might be
something such as:

“y =0.005 sin (2t * 200t)”

.. where:

e “y”isthe currentin amps as produced by the microphone at any particular
time.

e The amplitude is 0.005 amps (5 milliamps). The current produced by the
microphone will reach up to +0.005 amps and down to -0.005 amps.

e 200 cycles per second is the frequency of this electrical wave, which is also
the frequency of the sound of the bee.

e To keep things simple, we will say that the phase is zero.

e The mean level is zero. The microphone in this example produces current
centred around zero. Other microphones, or more specifically the circuits
in, or connected to, other microphones might not necessarily produce
waves with zero mean levels.

Note how when we were dealing in sound pressure, the amplitude and result of the
formula at any particular time were measured in pascals. Previously, the amplitude
was 0.02 pascals. Now the amplitude is 0.005 amps. This shows that we are at one
step of separation from reality. We have ended up with a portrayal of the sound
pressure. Depending on the circuit in, or connected to, a microphone, the wave
formula might refer to volts instead of amps. If the formula is showing a digital
recording of a wave (in which case, it will be stored as a series of y-axis values
taken from equally spaced moments of time, all scaled by a particular amount), the
amplitude will be measured in generic units. Generally, the actual units of the
captured wave will be irrelevant as long as the shape of the wave matches reality,
or is proportional to reality.

Amplitude as measured in amps can also be given in decibels. In such a case, the
standard reference value is 1 microamp. The abbreviation “dBuA” refers to
decibels comparing against 1 microamp. Amps are a “root power” value, so the
value of interest and the value of 1 microamp must be squared before the ratio is
calculated.

As we have seen, the amplitude might appear in many different forms. However,
the frequency will always match that of the original sound. [Or at least, the
frequency will always match if the measuring device is capable of keeping up with
the frequency of the sound.]
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The distance-based current wave will be:
“y =0.005 sin (2m * 0.5831x)”
.. where:

“w__»

e “y”isthe currentin amps as produced by the microphone when the
prevailing “front” of the sound is “x” metres away from where the
microphone recorded the sound.

e The amplitude is 0.005 amps.

e The spatial frequency is 0.5831 cycles per metre.

e The phase is zero.

e The mean level is zero.

Note, again, that this distance-based wave relies on being able to calculate “x”,
which is the distance from the measuring point to the prevailing “front” of the
sound as that “front” moves away from the measuring point. This might not be
possible, so this wave is more of a theoretical one than a useable formula.

To convert the time-based electrical wave back into a sound wave, the current can
be passed through a loudspeaker, which for the purposes of our example, will be
one that works in the same way as our microphone. The current passes through a
coil around a magnet attached to a diaphragm, and the variations in current cause
the magnet to move backwards and forwards accordingly. The movement of the
diaphragm causes air to be compressed at a rate matching the rises and falls of the
current, and those compressions are sound.

More about sound

Reality

Although the bee in our example created a 200 Hz pure wave, in reality, its sound
would be made up of a range of various and varying frequencies and amplitudes. It
would produce a signal, and not a pure wave. The same is true for most sounds.

Sound is not a wave

Although it will seem pedantic, it is important to remember that sound is not a
wave. We can use waves to portray the changes in air pressure that make up
sound, but there is more to the phenomenon of sound than that described by
waves. This idea is the same as how a pigeon is not a wave, or how a beach ball and
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a beetle are not a wave. We can use waves to describe particular attributes of
sound, pigeons, or beetles moving around beach balls, but waves do not portray
everything about them. Although people often say, “sound is a wave,” they
generally do this as shorthand for saying that sound has a characteristic that can
be portrayed using waves.

Hearing amplitude, frequency and phase in real life

As we have seen, the characteristics of a sound can be portrayed using time-based
and distance-based waves. When mammals and other animals hear sounds, their
mental interpretation of a received sound is more or less consistent with the
attributes of a time-based wave with this formula:

“v=Asin ((2nf*t) + )’

[We will ignore mean level in the formula.]

To examine how humans interpret sound, we will think about the notes on an
electronic piano. On the majority of musical instruments, the produced note
consists of multiple waves of various and varying frequencies and amplitudes, all
starting and ending at various times. For the following examples, we will assume
that we are dealing with an electronic piano that produces a pure, single Sine wave
tone for each note. In reality, such a piano would sound terrible, but it simplifies
the explanation.

When the “A” key on our electric piano is pressed, it produces a tone of 440 hertz.

If the key to the right of “A”, which is “A#”, is pressed, the keyboard will produce a
tone of a higher frequency. It would have a frequency of 466.16 hertz. We would
say that the note has a higher pitch. We might say it is “a higher note” which means
the same thing.

Pressing the key to the left of “A”, which is “G#”, would produce a sound with the
lower frequency of 415.30 hertz. We would say that it has “a lower pitch”, or it is “a
deeper note”.

The frequency of a sound is related to the perceived pitch of a sound. Faster
frequencies are higher notes; slower frequencies are deeper notes. In practice, our
interpretation of the pitch of a note is slightly influenced by other factors such as
the loudness of the note, and whether we hear a different note just beforehand
with which it can be compared.



A Book About Waves. Part 2 © Tim Warriner 2022 [2022-12-17] 117

Pressing the next “A” key to the right would produce a note at twice the frequency
of the first “A” key. This would have a frequency of 880 hertz. The way that the
human mind works means that we would perceive it as being the same note but
higher. We can tell if a note has a frequency that is an integer multiple of another
note.

Going back to the original 440 hertz “A” key - if we press it harder, it would still
make the same 440 hertz “A” sound, but it would be louder - in other words, the
frequency would be the same, but the amplitude would be higher. If we pressed
that key more gently, it would make the same sound but more quietly. The tone
would have the same frequency, but the amplitude would be lower. Our perception
of “loudness” is mostly related to the amplitude of a sound, but there are many
other factors that play a part. Perhaps obviously, our perception of loudness
depends on how far away we are from the source of the sound. Less obviously, our
perception of loudness works in a logarithmic scale - a sound is generally
perceived as being twice as loud if its amplitude is 10 times as high.

If we press the “A” key and the “A#” key at the same time, the sound from each will
be heard at the same time without affecting each other. The sound from one key
does not alter the amplitude or frequency of the other. The two notes coexist
independently of each other. If we had ten keyboards and pressed the “A” key on
each, all at the same time, the sound would be many times louder than the sound
from just one keyboard. This would be an example of superposition.

If we had two keyboards side by side, and we pressed the “A” on one, and a
thousandth of a second later pressed the same key on the other, we could say that
the waves representing the sounds had a difference in phase, although one might
struggle to know if it were true or not.

Perception

The brains of mammals, and presumably the brains of other animals, do not
necessarily relay or interpret a sound exactly as it is received. You can test this for
yourself by how you can choose to focus on a particular instrument in a piece of
music, and you will hear it more clearly than the others. You can then choose to
focus on a different instrument, and you will hear that more clearly. Nothing has
changed about the sound you are hearing, but you can adjust the relative loudness
of the individual instruments with your mind. There are countless factors in play
when we perceive a sound, so the relationship between the characteristics of
sound waves and our perception is fairly complicated.
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When our ears detect a sound, it is processed by the brain before we are
consciously or subconsciously made aware of it. What we believe we hear and the
exact sound that meets our ears are not necessarily the same. In a way, the brain is
the gatekeeper of sounds, in that it decides what we actually “hear”. A simple
example of this is how your brain might ignore a persistent tone in the
environment, to the extent that you might end up not being able to hear it.
Similarly, if you are intensely focused on something, you might not notice other
sounds.

All of this means that the connections between the characteristics of a sound wave
and what we would describe as pitch or loudness are not as strongly connected as
they could be.

Musical scales

The frequencies of the keys on a piano are arranged in a logarithmic scale. It is a
base 2 logarithmic scale. The frequencies of the notes do not increase at a set rate,
but at an ever-increasing rate. Every 12 notes, the frequency doubles. For example,
the frequency of a particular “A” note will be twice the frequency of the “A” note
preceding it, and half the frequency of the “A” note after it. The reason for this
relates to how we perceive notes of different frequencies, and ultimately to how
we perceive notes of twice the frequency as sounding similar. The idea is easier to
see on a guitar fretboard where sharps and flats are treated the same as the other
notes. A note on an open guitar string has half the frequency of the note at the
twelfth fret (which lies exactly half way along the string). If a fretboard has 24 or
more frets, the note at the 24t fret will have a frequency that is twice that of the
twelfth fret.

Wavelength versus frequency

Often in explanations of sound, mention is made of wavelength instead of, or as
well as, frequency. In other words, someone might say that the wavelength of notes
on a piano decrease as we play keys going towards the right, as opposed to saying
that the frequencies get higher.

The speed of sound is about 343 metres per second through air at 20 degrees
Celsius. As long as the speed of sound is constant, it does not really matter if we
think of frequency, period, spatial frequency or wavelength. They are all connected
to each other through the formula: wavelength = 343 * period. We can say that a
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particular event is dependent on a particular frequency, or we can say it is
dependent on a particular wavelength, and both will be correct as long as the
sound is moving at 343 metres per second.

Difficulties arise when there is some event that specifically depends on the
wavelength or specifically depends on the frequency. This is because the speed of
sound is constant only through air at a particular temperature. At higher
temperatures, it is faster; at lower temperatures, it is slower. [The temperature of
the air within your ears will be higher than 20 degrees.] The wavelength will not
have the same relationship with the frequency if the temperature changes. If the
speed of sound changes, the spatial frequency and wavelength will change, but the
frequency and period will remain the same.

If someone says that a particular wavelength of sound triggers a particular event,
then it often needs to be clarified that they mean specifically the wavelength, and
not the frequency [or the wavelength when the air temperature is 20 degrees
Celsius]. If they do not explain which they mean, then the meaning might be
ambiguous or incorrect. Similar ambiguities occur when discussing
electromagnetic waves. One might hope that when people say wavelength or
frequency in such a situation, they do mean specifically the wavelength or
specifically the frequency, but often this is not the case. Many people confuse the
concepts of wavelength and period, and many people confuse the ideas of time-
based waves and distance-based waves. It pays to be aware of the potential for
other people’s mistakes.

The Doppler effect

If you are travelling at sufficient speed towards the source of a sound, the pitch
(that is to say, the frequency) of the sound will seem to increase. If you are
travelling at sufficient speed away from the source of a sound, the pitch (the
frequency) of the sound will seem to decrease. The same thing happens if the
source of the sound is moving towards you or away from you. This phenomenon is
called the Doppler effect after the physicist Christian Doppler.

You might experience the Doppler effect when a jet plane flies overhead, or when a
fire engine with its siren drives past you. The approaching sound is higher pitched
than the departing sound.
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With the Doppler effect, when the sound is moving towards you, the perceived
frequency becomes higher. This is because your ears are receiving the cycles of the
wave at a higher rate than they are actually being produced. As the sound moves
away from you, the perceived frequency becomes lower. This is because your ears
are receiving the cycles of the wave at a lower rate than they are being produced.
In reality, the actual frequency remains the same - it is only the receiver of the
waves who perceives a change. The Doppler effect also changes the perceived
spatial frequency of the distance-based wave (and, therefore, the wavelength). It
changes the perceived time-based frequency because our ears are counting more
cycles for every second than before. It changes the perceived spatial frequency
because the perceived distance between each cycle is reduced.

As a reasonable analogy of the Doppler effect, imagine a series of evenly spaced
washing lines of drying clothes placed on posts:

Now, imagine that the posts are moving along tracks at a fixed speed towards you.
If you stand still between the tracks, the washing on the washing lines will hit you
in the face at regular intervals.
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The concept of the Doppler effect is analogous to if you suddenly started running
through the washing lines instead of standing still:

—
__._>_____;
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When running, you would be hit with washing at a faster rate. The washing lines

are still the same distance apart, and are still moving at the same speed, but they
will seem closer when you run through them [perceived lower wavelength], and
they will hit you with less interval between them [perceived higher frequency].

[A significant aspect of the Doppler effect is that it is relevant only to the receiver
of the waves. Someone observing you from a distance while you ran through the
washing lines would not perceive any change in how far away the lines were from
each other or how fast they moved. They would be able to tell that the washing was
hitting you in the face more quickly, but to them, the nature of the washing lines
would be the same whether you ran through them or not.]

The perceived frequency caused by the Doppler effect for a passing sound can be
calculated by:

speed of sound

tual
actual frequency * speed of sound — speed of source

... which, given that we know the speed of sound through air at 20 degrees Celsius,
becomes:

343
343 — speed of source

actual frequency *

.. O

actual frequency * 343

343 — speed of source
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Supposing someone playing a very loud electronic piano went past us at 19.25
metres per second (69.3 kilometres per hour), playing the note of “A”, which is 440
hertz, then during the whole of the approach, the note would sound to us like the
next key (“A#”) on the piano, which has a frequency of 466.16 hertz.

Theoretically, you could play simple tunes by travelling at varying speeds towards
the source of a very loud tone, In practice, the noise from the air passing your ears
would probably stop you from hearing the sound, and the dramatic changes from
one very high speed to another might not be good for you.

The Doppler effect can also occur with electromagnetic radiation, although the
subject can become quite complicated. With radio waves, the Doppler effect is
noticeable when receiving a signal from a satellite moving across the sky - the
perceived frequency will be slightly higher as the satellite moves nearer, and
slightly lower as the satellite moves further away. On earth, mobile phones [cell
phones] and mobile phone transmitters on masts have to take the Doppler effect
into account so that people in moving vehicles can still use their phones.

www.timwarriner.com
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Chapter 34: Electromagnetic Radiation

Electromagnetic Radiation

[Be aware that parts of this chapter might be incorrect.]

Electromagnetic radiation (often abbreviated to “EMR”) is the phenomenon that
includes light and radio transmissions. To put this another way, light and radio are
the names we give to particular ranges of frequencies within the electromagnetic
spectrum.

The subject of electromagnetic radiation is at a completely different level of
complexity from that of the waves we have seen so far. There are different levels at
which one can think about the subject that vary from being reasonably
straightforward to being extremely complicated. Coupled with that, scientists are
still working out the finer details of its nature.

Although we can see light, our vision does not particularly help us to understand
what it or electromagnetic radiation is. However, we can deduce much about light,
and therefore, electromagnetic radiation, from observing its behaviour. We cannot
see radio transmissions, but we can detect them using equipment.

Electromagnetic radiation is an entity in its own right, in the sense that it does not
need a medium through which to travel, unlike sound.

For a long time, scientists debated whether electromagnetic radiation consisted of
particles or waves [in a way that goes against my view that “nothing is just a
wave”]. Nowadays, it is generally agreed that electromagnetic radiation exhibits
either wave-like characteristics or particle-like characteristics, depending on how
it is observed. To put this very unscientifically, sometimes it is observed behaving
as if it were a group of bouncing tennis balls; at other times, it is observed
behaving as if it were a group of “object-less” theoretical waves.

When it comes to electromagnetic radiation, it is almost standard for people to say
that “it is a wave”, as if it were just a wave and nothing else. Whatever the nature of
electromagnetic radiation, I think it is easiest to understand at a basic level if you
think of it as countless particles that exhibit behaviour that can be described using
waves. When you have learnt enough to know its true nature, this book will be a
distant memory, so if my advice is wrong, it will not matter.
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Categories of EMR

Electromagnetic radiation is usually categorised, arbitrarily, according to the
frequencies being considered. For example, the radio broadcast frequencies are
treated as a separate group to the visible light frequencies, and those are treated as
a separate group to the ultraviolet light frequencies, and so on. In reality, there is
an uninterrupted scale of electromagnetic radiation frequencies, but the
categorisations help distinguish between the areas that have different uses to
society.

Some people prefer to categorise electromagnetic radiation in terms of the
wavelength of the wave, instead of the frequency. The speed of EMR is the speed of
light (visible light being a range of frequencies of EMR). The speed of light is about
299,792,458 metres per second through a vacuum. If we know the frequency of an
electromagnetic wave, we can calculate the wavelength by dividing the speed of
light by that frequency. Doing this is a variation of the standard distance, speed and
time formula:

distance = speed * time

... which, when altered to work with wavelength and period, becomes:

wavelength = speed * period

... which can be re-arranged to be:

period = wavelength + speed

... which means:

1 + period = speed + wavelength

... and therefore:

frequency = speed + wavelength

..and:

wavelength = speed + frequency
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As an example, an electromagnetic wave with a frequency of 100 MHz has a
wavelength of: 299,792,458 + 100,000,000 = 2.9979 metres.

Given that the speed of light is constant through the same medium, the wavelength
and frequency of an electromagnetic wave have a fixed relationship while the wave
is travelling through one particular medium. Therefore, for most situations it does
not really matter if we use wavelength or frequency. Using wavelength can make
things simpler when dealing with high frequencies - it might be easier for some
people to say and visualise “a 1 mm wavelength” than “a 300 GHz frequency”.
However, wavelength is a less useful measure if the wave passes from one medium
to another while it travels - the frequency will remain the same, but the
wavelength will change, even if ever so slightly.

When it comes to categorising the radio broadcast part of the electromagnetic
spectrum, it is common to see it divided into regions or bands based on one of
several criteria. Some of these are as follows:

Low or high frequency

One system of categorisation is based on arbitrarily chosen adjectives describing
the extent to which the frequencies can be considered “high” or “low”. These
categories are specified by the International Telecommunication Union. This is an
organisation that oversees the rules for radio transmissions that all countries in
the world have agreed to follow. The basic categories are as follows:

e VLF or “very low frequency”, which is 3 kHz to 30 kHz

e LF or “low frequency”, which is 30 kHz to 300 kHz

e MF or “medium frequency”, which is 300 kHz to 3 MHz

e HF or “high frequency”, which is 3 MHz to 30 MHz

e VHF or “very high frequency”, which is 30 MHz to 300 MHz

e UHF or “ultra high frequency”, which is 300 MHz to 3 GHz

e SHF or “super high frequency”, which is 3 GHz to 30 GHz

e EHF or “extremely high frequency”, which is 30 GHz to 300 GHz
From a linguistic point of view, the adjectives “very”, “super”, “extremely” and so
on, are not ones that have an implied order, so the only way to remember the order
of this list is to learn it. In some languages other than English, the abbreviations
remain the same, but the spelling out of the abbreviations is translated. In other
languages, the abbreviations are translated too.
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Wavelength

Another category system for radio broadcast bands is based on the relative size of
the wavelength:

e Longwave
e Medium wave
e Shortwave

The frequencies in the “Long wave” band have longer wavelengths than those in
the “Medium wave” band, which in turn, have longer wavelengths than those in the
“Short wave” band.

The centre wavelength

A system used by radio amateurs is to name a range of frequencies on a rounded-
up wavelength from within, or close to, that range. For example, the “20 metre
band” refers to frequencies from 14 MHz to 14.35 MHz. The wavelength for the
frequency of 14 MHz is 21.4137 metres. The wavelength for the frequency of 14.35
MHz is 20.8915 metres. The frequency with a wavelength of 20 metres is actually
14.9896 MHz, which is above the range of frequencies. However, it is easier to call
the whole band, the “20 metre band” than to call it the “21 metre band”, or to
remember wavelengths with decimal points.

Remember that as the frequency increases, the wavelength decreases. Sometimes,
tables such are this are ordered with the smallest wavelength first, which puts it in
reverse frequency order.

The amateur radio bands within the UK, at the time of writing [2022], are:

160 metres, which is 1.81 MHz to 2 MHz

80 metres, which is 3.5 MHz to 3.8 MHz

60 metres, which is 5.1 MHz to 5.405 MHz

40 metres, which is 7.0 MHz to 7.2 MHz

30 metres, which is 10.1 MHz to 10.15 MHz

20 metres, which is 14.0 MHz to 14.35 MHz

16.5 metres [or 17 metres], which is 18.068 MHz to 18.168 MHz
15 metres, which is 21.0 MHz to 21.45 MHz

12 metres, which is 24.89 MHz to 24.99 MHz

10 metres, which is 28.0 MHz to 29.7 MHz
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According to the anonymous author of “The Radio Spectrum - UK Allocations” list,
the bands were originally 1.8 MHz, 3.6 MHz, 7 MHz, 14 MHz, 21 MHz, and 28 MHz.
All were either multiples of 7 or divisors of 7.2 (so roughly divisors of 7). To use
their terminology, they were all “harmonically related”.

Modulation type

Often a range of frequencies is categorised according to whether the radio signals
within that range are generally modulated with amplitude modulation or
frequency modulation. [I discussed amplitude modulation in Chapter 16. I will
discuss more modulation in the next few chapters.] This categorisation is really
only used by “non-radio” people to refer to broadcast radio station bands: AM is
often used to refer to the long wave, medium wave, and sometimes short wave
bands, while FM is often used to refer to the 87.5 MHz to 108 MHz band. As
amplitude modulation and frequency modulation can be used at any frequency,
this categorisation is not an accurate one to use if you are being pedantic, but
usually people will know what is meant.

Letters

Another system identifies higher frequency ranges by letters. There are variations
of this system, so the following list is that of the United States Institute of Electrical
and Electronics Engineers (IEEE). This list has been copied from Wikipedia:

e HF or “high frequency”, which is 3 MHz to 30 MHz

e VHF or “very high frequency”, which is 30 MHz to 300 MHz

e UHF, or “ultra high frequency”, which is 300 MHz to 1 GHz

e L for “long wave”, which is 1 GHz to 2 GHz

e S for “short wave”, which is 2 GHz to 4 GHz

e (,whichis 4 GHz to 8 GHz

e X whichis 8 GHz to 12 GHz

e Ku or Ky, which is 12 GHz to 18 GHz [The “u” indicates the range under “K”]
e K whichis 18 GHz to 27 GHz

e KaorK, whichis 27 GHz to 40 GHz [The “a” indicates the range above “K”]
e V,whichis 40 GHz to 75 GHz

e W, whichis 75 GHzto 110 GHz

e G or “millimetre wave”, which is 110 GHz to 300 GHz
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[Sources]

The above categories section was compiled with information from:

e “The Radio Spectrum - UK Allocations” list from 2012, the author of which
wanted to remain anonymous, as far as I can tell. At the time of writing, it is
available here: https://ukspec.tripod.com/spectrum.html

e Wikipedia

e Countless other documents

Interesting EMR frequencies

What follows is a simple list of some of the more interesting frequencies of
electromagnetic radiation. This is not a complete list, but just a list of the
frequencies I think are interesting. This has been compiled with information from:

e “The Radio Spectrum - UK Allocations” list from 2012, available at:

https://ukspec.tripod.com/spectrum.html

e General observations

e ODTR (the Irish equivalent to Ofcom)

e Ofcom (the UK equivalent to ODTR)

e Wikipedia

e Countless other documents

Values in brackets after some of the frequencies refer to the wavelength for that
frequency. Note that the boundaries of some frequency ranges are a matter of
opinion, such as the frequencies for colours. Any frequencies that are assigned by a
government are likely to change, so some of this list will be out of date.

0 Hz: All electromagnetic waves have a frequency higher than this, or else they
would not be waves.

60 kHz: The MSF time signal in the UK is transmitted at this frequency. This
consists of a short tone played at the start of every second in time. The length of
the tone varies to indicate other information such as the time and date. Some
clocks use the signal to set the correct time automatically.

77.5 kHz: The DCF77 time signal in Germany. This is similar to the MSF time
signal.
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148.5 kHz to 283.5 kHz: The long wave band. There are three internationally
agreed regions for radio transmissions, which have been specified by the
International Telecommunication Union. This means that radio broadcasts from
one country within a region will not generally interfere with those of neighbouring
countries within that region. The spectrum allocated to particular radio frequency
usage varies slightly between the regions. Region 1 covers Africa, Europe, and
northern Asia. Region 2 covers North and South America. Region 3 covers southern
Asia and Australasia. The range of frequencies for the long wave band given here
are those at which it is legal for a licensed radio station in Region 1 to broadcast
according to the international agreement. Individual countries within a region
sometimes ignore aspects of the agreement, and sometimes they restrict the
broadcast range further. The difference in regions means that, for example, an FM
radio being sold in the United Kingdom might have a slightly different range of
reception from one being sold in a country in other regions. Countries outside
Region 1 do not generally use the long wave band. In Ireland and the UK, the long
wave broadcast band is from 153 kHz to 279 kHz.

526.5 kHz to 1606.5 kHz: The medium wave band in Region 1.

3.5 MHz to 3.8 MHz: The 80-metre amateur radio band. This is called the 80-
metre band because the wavelength of a frequency within the band (about 3.75
MHz) is 80 metres. Thinking of it as the 80-metre band is easier than thinking of it
as the 85.65-metre band.

5.9 MHz to 6.2 MHz: One of the short wave radio bands.

27.60125 MHz to 27.99125 MHz: The CB radio band in the UK. The band in the
European Union countries is 26.965 MHz to 27.405 MHz.

87.5 MHz to 108 MHz: The “FM” radio broadcast band in Region 1 (Africa, Europe
and northern Asia). For Region 2 (the Americas), it is 88 MHz to 108 MHz. For
Region 3 (southern Asia and Australasia), it is 87 MHz to 108 MHz. Not all
countries within a region adhere strictly to these frequencies. For example, the FM
broadcast band in Japan used to be 76 MHz to 95 MHz.

174 MHz to 230 MHz: DAB digital radio in Ireland and the UK.
433.075 MHz to 434.775 MHz (a wavelength of about 69 cm): A frequency

assigned to low power devices such as wireless garden thermometers and wireless
boiler controllers. These frequencies are generally just used in Europe.
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470 MHz to 862 MHz: Digital television in Ireland and the UK.

2.4 GHz (a wavelength of about 12 cm): Wi-Fi routers, Bluetooth, and microwave
ovens. Microwave ovens transmit with a much higher power than Wi-Fi routers.
For example, a typical Wi-Fi router might transmit 0.1 watts as a signal that is
dispersed in every direction over dozens of metres, while a typical microwave
oven might transmit 1000 watts, nearly all of which remains within the oven’s
small insides. That is why your microwave oven cooks food, but your Wi-Fi router
does not.

10.7 GHz (a wavelength of 2.8 cm): Satellite television signals. These are
transmitted from geostationary satellites floating 36,000 km above the equator of
the earth. The low-noise block, which is the device sitting within the receiving dish,
converts the radio signal from a frequency of 10.7 GHz into an electrical current
with a frequency of about 1 GHz. This means that the signal can travel down a
coaxial cable to the decoder. At high frequencies, signals in cables require much
more complicated handling than those at lower frequencies. Therefore, it makes
sense to convert the signal to a lower frequency as soon as possible in the decoding
process.

20 THz (15 pm) to 37.5 THz (8 um): Infrared radiation that can be detected with
a typical thermal camera. A terahertz, abbreviated to “THz”, is a million million
hertz. A micrometre, abbreviated to “um” is a millionth of a metre or a thousandth
of a millimetre. “Infrared radiation” is the name given to electromagnetic radiation
with a frequency above “radio waves” and below visible red light. The prefix
“infra”, in this case, is the Latin preposition meaning “below” or “lower than”.
Therefore, “infrared” refers to the group of frequencies immediately below that of
visible red light. [Red light has the lowest frequency of the visible light
frequencies.] Generally, the frequencies within the entire infrared radiation band
are given as being from roughly 300 GHz to 441 THz. | am dividing the range of
infrared radiation into two arbitrary sections.

The first section is the range of frequencies that can be detected with a typical
thermal camera, such as is used by the military, police helicopters, or people
tracking animals at night. Thermal cameras detect thermal radiation, which is
another name for radiated heat. Apart from some complicated exceptions, every
object in the universe radiates heat if it has a temperature above absolute zero.
Radiated heat or “thermal radiation” is just electromagnetic radiation. The
frequency of electromagnetic radiation emitted from an object as thermal radiation
is related to the temperature of that object - the higher the temperature, the higher
the frequency. An example of this is a red-hot poker in a fire - the poker is so hot
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that it is emitting electromagnetic radiation at a frequency in the visible light band.
It glows and becomes a visible light source. As the poker cools, the electromagnetic
radiation reduces in frequency, and the heat radiation stops being in the visible
light spectrum. In daylight, you can still see the poker, but that is because it is
reflecting light from other sources. In the dark, you will not be able to see it at all.
However, for a while as it cools, you will still be able to feel the electromagnetic
radiation on your skin, which you will interpret as heat. The cooler your skin is, the
lower the temperature of the poker that you will be able to detect. Thermal
cameras can detect thermal radiation at much lower frequencies and at much
lower power than human skin. All mammals, perhaps all animals, and perhaps all
plants, can sense thermal radiation below the frequency of visible light to some
extent, as it is an important factor in survival.

A common misconception is that thermal radiation occurs only in the infrared
band of frequencies. However, thermal radiation can have any frequency. The term
“infrared” is often misunderstood as implying “heat”.

Humans and animals can see thermal radiation with their eyes if it is at a frequency
in the visible light spectrum. If it is at a frequency above or below the visible light
spectrum, then by the definition of visible light, it cannot be seen. However, it might
still be detected. In humans, the detection of radiated heat through skin should be
considered one of the senses, but it is generally forgotten about, along with sensing
vibration and gravity. Although thermal radiation occurs at any frequency, the
general range that a typical modern thermal camera can detect is between 20 THz
and 37.5 THz. Hence, | am treating this range as an arbitrary band.

316 THz (950 nm) to 371 THz (808 nm). This is the second section of infrared
radiation as I am categorising it, which consists of frequencies just below visible
light. [“nm” is the abbreviation for nanometres. There are 1000 nanometres in a
micrometre, a million nanometres in a millimetre, and a billion (9 zeroes)
nanometres in a metre]. In this range are the frequencies of radiation emitted by
infrared LEDs. Infrared LEDs produce the signal in television remote controls.
They are also used to illuminate areas at night, in a way that the illumination is
visible only to infrared-detecting CCTV cameras. These cameras detect the infrared
light reflected back from objects that have been illuminated by infrared LEDs.
Infrared light in this range is undetectable by humans without equipment, but it is
thought that some animals can see the higher range. Some infrared LEDs glow a
faint red colour, which gives an idea of the maximum frequency of the
electromagnetic radiation they are emitting. This band of infrared radiation has
little to do with the “thermal camera” infrared radiation band, except that very hot
things might emit thermal radiation in this band if they are at a high temperature.
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As a red-hot poker cools, it will glow in this band briefly as its thermal radiation
drops in frequency. Of course, the glow would be visible only to a camera that can
detect infrared light. Humans and animals will not sense heat from infrared LEDs,
and a thermal camera will not see the LED as warmer than its surroundings
(unless the electronics behind the LED is producing its own heat). The “thermal
camera” infrared range and the “infrared LED” infrared range tend to be treated as
one big range of infrared radiation, which can be confusing. Infrared cameras, in
the generally accepted sense of their definition, only detect light of frequencies
starting at the high end of the infrared part of the electromagnetic spectrum.

441 THz (680 nm) to 714 THz (420 nm): Between these frequencies is light that
is visible to humans - in other words, frequencies of electromagnetic radiation that
the average human can detect and distinguish with their eyes. [The exact maximum
and minimum vary from person to person, so you will see other values in other
documents. I have read that some people can see down to 374 THz (800 nm). The
values given here are taken from “The Radio Spectrum - UK Allocations” list.] This
range starts with the frequency for the colour red, continues with yellow, green,
and blue, and ends with violet. The boundaries for what we would describe as
being a particular colour are completely arbitrary and socially constructed. In
reality, there is a continuous scale of frequencies, and the names of the colours that
we assign to particular frequencies are a matter of opinion. [For example, many
people might think of violet as being blue. Some people think of pink as being a
type of red, while others do not. Some languages treat light blue and dark blue as
being different colours.] The frequency range of other animals’ vision varies.
Although many animals have better night vision than humans, this is generally
because they are better adapted to seeing in low light as opposed to being able to
see frequencies of electromagnetic radiation that we cannot. [Even if they could
see other frequencies, once the sun has gone down and there are no other sources
of light to reflect off objects, that ability has no use.] Although human eyes see
visible light, our brains interpret it before the information is passed to our
conscious or subconscious. [The same thing is true of other mammals and birds.]
This means that, ultimately, the brain controls our perception. What our eyes
detect might not match with what we think we see. The most obvious example of
the separation between our perception and reality is how, in certain
circumstances, it is possible to “see” hallucinations. A less extreme example is how
we are generally unaware of the blind spot in the vision of each eye. The brain
ignores the gaps. Similarly, we are usually unaware of when we are blinking.
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714 THz (420 nm): The start of “near-ultraviolet” light. The “ultra” part of the
word “ultraviolet” comes from the Latin preposition “ultra” meaning “beyond” in
its various senses. Therefore, “ultraviolet” refers to the frequencies above that of
the visible colour of violet. The term “near-ultraviolet” means those frequencies
above visible violet, but nearer to it than those in the “far-ultraviolet” range.
Humans cannot see ultraviolet light, but if near-ultraviolet light is shone on certain
materials such as white cotton, the ultraviolet light is reflected back at a lower
frequency, which we can see. This makes the material seem bright compared with
everything around it. This phenomenon is called “fluorescence”. The most common
example of fluorescence is when a yellow fluorescent safety jacket appears
brighter than the surrounding environment. The light hitting it is reflected back at
a lower frequency, and therefore, the jacket stands out from the surrounding
objects. A similar phenomenon is “phosphorescence”, which is when a portion of
the light hitting a material is reflected back over a period of time instead of
instantly. We see this happening with so-called luminous paint. Luminous paint
glows for a while after light has been shone at it. [Strictly speaking, modern
luminous paint should be called “phosphorescent paint” because literally luminous
paint would glow without needing exposure to light to charge it up.]

30,000 THz (10 nm): This is the frequency of X-rays.

30,000,000 THz (10 pm): Gamma rays. [“pm” is the abbreviation for picometres.
There are 1000 picometres in a nanometre, a million picometres in a micrometre, a
billion (9 zeroes) picometres in a millimetre, and a thousand billion (12 zeroes)
picometres in a metre].

Superposition

All the different frequencies in the electromagnetic radiation spectrum co-exist at
the same time. As | have said before, when a radio receiver receives a chosen
broadcast, it is actually receiving frequencies from the entire electromagnetic
spectrum passing that place, all added together as one gigantic signal. As [ have
also said before, different frequencies do not mix. We can add waves of different
frequencies together, and it will always be possible to separate them (or calculate
which ones were added together). This is why Fourier series analysis works. A
non-mathematical example of this “unmixability” can be seen when a light is shone
at a prism. Despite the frequencies that make up the light having been added
together, the prism separates them out in order of frequency. A rainbow does the
same thing.
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When an FM radio, for example, decodes a broadcast, it has to filter out every
frequency of electromagnetic radiation outside the narrow band in which it is
interested. Fortunately, most of the electromagnetic spectrum is incompatible with
the nature of an FM radio - an FM radio would not (normally) have to make an
effort to filter out light or x-rays, for example. The radio’s antenna filters out most
of the unwanted frequencies while amplifying the wanted frequencies. The
electronics within the radio does the rest of the filtering.

Bandwidth

The extent of the electromagnetic radiation spectrum that can be used by humans
for communication is limited by both physics and the abilities of our existing
technology. Different frequencies have different properties. This is most obvious
when comparing light with radio broadcast frequencies.

When it comes to radio communication, there is a limited range of frequencies that
can be used, or to put this another way, there is a limited bandwidth. Generally, it
is easier to make radio equipment that works at lower frequencies. Higher
frequency radio equipment needs to be much more exact in its construction and is
generally more expensive. Higher radio frequencies tend to require a clear, straight
path between the transmitter and the receiver. For example, a terrestrial satellite
receiver dish needs to be able to “see” the satellite in space - communication will
not work if there is a hill or a tree in the way. This limitation makes higher
frequencies less easy to use than lower frequencies. All of this means that there is
really a finite range of frequencies - a finite bandwidth - that can be used for radio
communication.

A common theme in part one of this book was that a signal that is not a pure wave
is actually made up of two or more pure waves of different frequencies. This means
that any broadcast that is not a pure wave will use up more than one frequency of
the radio spectrum. As most useful communication uses modulated signals, as
opposed to just single pure waves, most useful communication will use up multiple
frequencies at a time. In Europe, for example, a medium wave broadcast from a
radio station generally uses up 6.3 kHz of the frequency spectrum. A broadcast
from a stereo FM radio station will use over 100 kHz. From this, we can see that
there is only so much space available for radio broadcasts. This is why
governments and international organisations control who is allowed to broadcast,
and where in the spectrum they are allowed to broadcast. Nowadays, the radio
spectrum is essentially fully used, although a lot of the spectrum is kept back by
governments for their own purposes. The only way to increase capacity is either to
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use higher frequencies (which are less versatile and harder to use) or to find more
efficient ways of using the spectrum that we are using now. Digital television and
digital radio are a good example of the latter. By converting sound and vision to a
digital form, and by using more advanced modulation systems, digital television
and radio use up less bandwidth than their analogue alternatives would have done.

[A similar limit occurs in waves sent down electrical cables. For any piece of cable
of a particular design and of a particular length, there is a maximum frequency of
wave that can travel down it without being corrupted or being lost due to its
amplitude falling too much. Therefore, there is a limited number of frequencies
that can travel down any particular cable, and so there is a limited bandwidth. The
higher quality the cable and the shorter the cable, the higher the frequencies that
can travel down it, and so the larger the available bandwidth. A higher bandwidth
means that more information can be sent at the same time.]

EMR in more detail

What follows is a disorganised list of facts about electromagnetic radiation that can
help in understanding it.

Electromagnetic radiation consists of particles called “photons”. An infinitesimally
short burst of light from the tiniest of sources would consist of a densely packed
spherical shell of photons all travelling away from the source in much the same
way that fluctuations in sound pressure leave the source of a sound.

Electromagnetic radiation’s name is due to the radiation having two attributes:
e An electrical attribute
¢ A magnetic attribute

These attributes are inseparable and make up the two wave aspects of a photon.
The frequency of a photon relates to the frequency of the electrical attribute and
the frequency of the magnetic attribute. These attributes share the same
frequency. The two attributes fluctuate at 90 degrees to each other, and also at 90
degrees to the direction in which the photon travels. [By this, [ do not mean that
they are 90 degrees out of phase, but that the fluctuations are literally in different
directions.]
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In practice, a source of light might exist for seconds of time or longer. In which
case, there would not be a single spherical shell of photons, but an ever expanding,
densely packed, sphere of photons, which is constantly filled from the source.

As the sphere of photons expands ever outwards, there will be a point some
distance away after which the wall of photons would appear to be nearly flat, as
opposed to curved.

A simple real-world example of a source of light is a burning candle on a table in an
otherwise dark and empty room. The light travels away from the flame in the form
of a densely packed sphere of photons of many different frequencies. Some of the
photons will quickly hit the top of the wax part of the candle; some will hit the
table underneath the candle. Some will hit the walls and ceiling of the room.

When a photon reaches an object in the room:

e It might go straight through, in which case, it will continue on the other side,
as if the object were not there.

e It might go straight through, but have its direction altered. This is called
refraction.

e It might be reflected, in which case, it will bounce off in a different direction.

e It might react with the object’s surface, in which case, it is essentially
absorbed into it. The reaction will provoke further behaviour in the object’s
surface, perhaps creating heat or inducing an electrical current, among
other things.

For an individual photon, only one of these events can happen at a time. However,
for a group of photons, a portion might go straight through, a portion might have
their direction altered, a portion might be reflected, and a portion might be
absorbed by a material, all at the same time. Which of these happens, and the
extent to which it happens, depends on the properties of the object, the properties
of the surface of the object, the angle of approach of the photons, the frequency of
each photon, the density of the photons at that point, and other factors.

Glass is a material through which visible photons can travel unhindered. Prisms
are objects that can refract visible photons. Mirrors are made of materials that
cause visible photons to bounce off them. Any object that is not transparent or
mirror-like is one that absorbs an amount of visible photons, while letting others
bounce away. These objects are essentially filtering photons by frequency. The
photons of particular frequencies leaving these objects are what give an object its
colour.
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If some or all of the photons are reflected off an object, that object can be treated
almost as if it were a source of electromagnetic radiation itself. The photons
reflecting off an object will travel outwards until they meet other objects, in which
case, they will pass, be refracted, be reflected or be absorbed.

If photons within a particular range of frequencies reach your eye, they react with
the surface of the back of your eye, which sends a signal to your brain
acknowledging their existence. This range of frequencies is the range of what we
would call “visible light”. Our brains can categorise the different frequencies as
colours. Frequencies outside the range of visible light frequencies will also hit the
back of your eye, but either they will not react with the back of your eye, or your
eye will not be capable of acknowledging them.

A photon is destroyed when it is detected (either through a detecting device or by
being seen with eyes). For it to be detected, it must react with the detector. The act
of detection causes it to cease to exist. When a photon (of a frequency that will
react with your retina) reaches your eye, it is destroyed. Photons travel in such
huge numbers that this is mostly irrelevant from a detection point of view, but it
means that it would be impossible to follow every point in the journey of one
photon - once it is observed, it ceases to exist.

Photons are undetectable until such point as they hit a detector of some kind. You
cannot observe photons going past a detector. The only way to observe a photon in
any way is to “catch” it - in other words, for it to hit the detector. To put this in
terms of light, you cannot see light unless it enters your eyes. You cannot see light
going past you. You can only observe light that is moving perpendicular to your
eyes. [If you shine a torch (flash light) into the sky at night, you might see the light
illuminating dust or moisture in the air, in which case it is bouncing off the dust or
moisture into your eyes, but you cannot see the light otherwise.

From a superficial point of view, two people standing next to each other and
looking in the same direction will see the same sights. However, from an
electromagnetic radiation point of view, the two people will be receiving different
photons. They cannot receive the same photons as the photons are destroyed
when they are seen.

Humans and other animals can see photons within a set range of frequencies
directly from a source, and also those that have been reflected from an object. To
put this another way, we can see direct light and reflected light.
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For say, a yellow object in the room, the photons of frequencies other than those
that appear yellow to us will be absorbed into the object, and the photons of
frequencies that do appear yellow to us will be reflected. Therefore, the object will
appear yellow in colour. To put this another way, some objects will absorb all the
photons apart from those that appear yellow to us, and therefore, we will see the
yellow frequency photons reflected from that object, and so we will describe the
colour of that object as being yellow.

Objects that do not reflect much or any light appear black to us. They absorb a
large number of photons of many frequencies. A truly black object would reflect no
light at all. In everyday life, you would only be aware of its existence because the
objects surrounding it would reflect light, and therefore, it would stand out. Objects
that reflect most, or all light, appear silvery or mirror-like to us. Objects that reflect
slightly less light appear white to us. Objects through which light can travel
unhindered appear transparent to us.

When we look at an object that does not emit its own light, we are seeing light that
has been reflected from something that does, such as the sun or a lamp. If we look
at a printed photograph of that object, we will be looking at reflected light from off
the printed photograph. If we look at a photograph of that object on a computer
screen, we will see emitted light from the screen. In this way, there is a difference
between a printed photograph, a photograph on a screen, and the actual object that
was photographed.

The quantity of photons being detected in one place is what gives electromagnetic
radiation its power. With light, the higher the density of the photons received, the
brighter the light appears; the lower the density, the dimmer the light appears.

Photons become sparser as they move outwards from the source because the same
number of photons fills a larger area. Therefore, the further away from the source
that you view a light, the fewer photons will reach you, and so the dimmer the light
will appear. Given that, one can understand that the number of photons emanating
from even the tiniest of light sources must be huge. Similarly, the number emitted
from a star must be unimaginable, especially when you consider that it would be
possible to see the light from a star at the same distance in any direction around it.

The more densely packed the photons are, the less the electromagnetic radiation
as a whole is blocked by objects. An example of this is how you cannot normally
see through your hands, but if you shine a very bright light against your hand, your
hands will glow red and you might be able to make out the shape of your finger
bones.
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An analogy

The physicist Richard Feynman said that he had no way to visualise
electromagnetic radiation. He was not admitting to a flaw in his abilities, but
making a statement about how it is ultimately impossible to visualise something as
complicated as electromagnetic radiation in an accurate way. Many properties of
electromagnetic radiation can be known through maths and experiment, but it is
too vast and complicated a subject to be reduced to a simple analogy or
visualisation for humans. Any simple way of imagining how electromagnetic
radiation works will be inherently incorrect. We saw the difficulties of making
good analogies for sound in the previous chapter, and sound is a far simpler
concept than electromagnetic radiation. Despite all of this, in this section, I will
give an analogy for the basic behaviour of electromagnetic radiation. This analogy
is complicated enough that it might be misconstrued as an explanation. However, it
should really be thought of in the same way that we would think about how a line
of people passing boxes to each other is similar to one attribute of sound. The line
of people is analogous to one aspect of the phenomenon of sound, and, with other
information about sound, it helps us visualise sound more easily. The following
analogy is not representative of electromagnetic radiation, but might help you
visualise aspects of it more easily.

The analogy will not help you with maths or physics, but it might be helpful if you
want to visualise electromagnetic radiation without drowning in maths. As you
learn more, you can decide in which ways it is lacking. If you wrote this in a physics
exam, you would probably fail.

A photon can be thought of as being analogous to the beach ball and beetles
example from Chapter 32. We will start by imagining the photon as the beach ball,
and imagine objects rotating around it in the same way as the beetles. In this way,
we are starting to have a visualisation that incorporates the two wave aspects of a
photon as well as the particle attribute. The beech ball will be treated as a sphere,
Beetle 1 will be called Object 1, and Beetle 2 will be called Object 2. Instead of
thinking of three waves for each object, we will only consider the z-axis wave of
Object 1 and the x-axis wave of Object 2. Our beetles both started at the same place
on the back of the ball, and so will Object 1 and Object 2.



A Book About Waves. Part 2 © Tim Warriner 2022 [2022-12-17]

The path of Object 1 around the sphere is as so:

z

Objed: 1

J—

The path of Object 2 around the sphere is as so:
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The paths of each object together are as so:

=
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We will say that Object 1’s z-axis wave is the electric wave and the Object 2’s x-axis
wave is the magnetic wave. In this way, we have a situation where we can have an
electric wave and a magnetic wave in one contained entity.

If Object 1 and Object 2 were to rotate around the sphere at 100 million cycles per
second, while the sphere moved away from the source at the speed of light, then
the situation would be analogous to a 100 MHz photon.

We will say that both Objects start at the back centre of the sphere. This means
that Object 1 will start by rising up the z-axis, and Object 2 will start by rising along
the x-axis. The Sine waves that portray their heights along their respective axes
will have the same phase and dimensions as each other, and will appear as in the
following pictures. To maintain how this is just an analogy, the vertical units are
nameless units. The time axis is unlabelled to allow the same graph to apply to any
frequency.
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In this analogy, the waves from Object 1 and Object 2 are transverse waves, in that
they are at 90 degrees to the direction of travel of the spheres. They are also Type
A waves, in that measurements of the y-axis of Object 1 and the x-axis of Object 2
would need to be made at the moving spheres. [They might be Type C waves, but
to keep things simple, we will try not to think about this.]

Continuing with the analogy, we will say that there are countless spheres being
emitted from a source at any one time. They travel outwards away from the source
at the speed of light. The spheres can overlap each other, and even occupy the
same space as each other.
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Electric and magnetic fields

If we say that the z-axis movement of Object 1 is analogous to being an electric
attribute, and the x-axis movement of Object 2 is analogous to being a magnetic
attribute, then one sphere will have an electric attribute and a magnetic attribute.
We will say that a group of spheres combine to produce an electric field, and a
magnetic field. The electric field will fluctuate upwards and downwards in the
direction of the z-axes of the spheres, and the magnetic field will fluctuate in and
out in the direction of the x-axes of the spheres. The fluctuations of the electric and
magnetic fields will have the same frequency as the Objects that create it.

In each of the next two pictures, there is a row of spheres. The collection of Object
1s creates an electric field that fluctuates up and down (along the z-axis). The
collection of Object 2s creates a magnetic field that fluctuates in and out (along the
x-axis). When the electric field is high, the magnetic field is high:

Electric f&elcl
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When the electric field is low, the magnetic field is low:
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The electric field and the magnetic field fluctuate according to the z-axis positions
of the Object 1s, and the x-axis positions of the Object 2s.
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The waves that indicate the fluctuations of the two fields will match the waves for
each Object 1 and each Object 2, but with the amplitudes measured in different
units.
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The analogy and reality become much more complicated when we acknowledge
that the spheres would seldom exist in a neat row such as this. In practice, there
would be a dense volume of spheres moving out from a source. Therefore, the
nature of the electric and magnetic fields would not be in neat planes as in the
picture, but in a form that is conceptually harder to visualise. The electric and
magnetic fields would be everywhere, and there would be no way to distinguish
one area of a field from any other. However, there would still be fluctuations at
right angles to the direction of motion, and these would still be detectable. As the
first step to demonstrating how complicated the idea becomes, supposing we look
at just the magnetic fields, and we have a one-sphere-thick grid of spheres, we
would have the following situation:

.
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There are several horizontal planes of magnetic fields.
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For the electric field for this situation, we would have overlapping planes:

T 1T 1

Vol

In practice, given how small the spheres are, there would be countless
indistinguishable planes for both the electric and magnetic fields. If we had more
than a two-dimensional array of spheres, the magnetic field planes would all
overlap each other, and the electric field planes would all overlap each other. There
would really be a continuous electric field and a continuous magnetic field
throughout the entire area where the spheres existed.

One way to simplify the idea in one’s mind is to say that the fields only appear
when they are detected. By thinking in this way, there will be fewer layers to worry
about. Whether this makes the analogy better or worse is a different matter.

Units

Outside of analogies, electric fields are measured in volts per metre or in newtons
per coulomb. Magnetic fields are measured in tesla or in gauss.

Sometimes, in graphs that you might see in books or online, the magnetic field is
portrayed as having a smaller amplitude than the electric field. However, because
they are different types of phenomena and are measured with different units, it is
difficult to say that one is weaker, stronger or equal to the other. Any comparison
would be like comparing the height of an orange to the hardness of an apple. They
are different, so although they could be compared, the comparison would not be
useful.
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Waves

In our analogy, we could create time-based and distance-based wave formulas that
described the z-axis position of an Object 1 around a sphere, and the x-axis
position of an Object 2 around a sphere. We could also create wave formulas based
on the strength of the electric field and the magnetic field created by a collection of
Object 1s and Object 2s. [Although, as the analogy is intentionally vague, we do not
have enough information to create formulas with actual values.]

Hitting other objects

In our analogy, if a sphere hits the surface of a material, it might be reflected, in
which case, it will bounce off in the same way that a ball would bounce off a wall.
Alternatively, it might travel through the material or react with it in some way.
This is still analogous to the behaviour of a photon.

Polarisation

The analogy lends itself to understanding the concept of “polarisation”.
Polarisation is the direction in which the electric field of an electromagnetic wave
fluctuates. If the electric field fluctuates vertically, the wave describing the electric
field is said to have a “vertical polarisation”. This idea is easiest to imagine with an
Object 1 moving around a sphere and so fluctuating up and down the z-axis:

The z-axis movement of an Object 1 is as so:

Z
T
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If there are a group of spheres, then the electric field created from them will also
fluctuate up and down in this way.
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As the electric field fluctuates vertically, the situation is called “vertical

polarisation”.

If the electric field fluctuates horizontally, the wave describing the electric field is
said to have a “horizontal polarisation”. This is easiest to visualise with an Object 1
moving around a sphere and fluctuating up and down the z-axis, but with the axes
rotated, so that the z-axis is now on its side. The z-axis points sideways instead of
upwards. The x-axis points downwards. All the axes have been rotated around

y=0:

>Y > durection

R€
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If there are a group of spheres, then the electric field created from them will also
fluctuate horizontally, and we can say that there is “horizontal polarisation”.

Electric
field = vl
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[Note that the rotation of the axes is just a way to make the idea of polarisation
easier to understand. We could just as easily have pictures with the axes remaining
the same, but with the Object 1s and the electric field fluctuating along the x-axis. It
is the state of fluctuating horizontally or vertically that is important, and not which
way up the axes are.]

Polarisation does not have to be just horizontal or vertical. It can be at any angle.
Polarisation can be used to describe the fluctuations of all transverse waves. The
pigeon wing tip wave has a vertical polarisation. If the pigeon flew on its side, it
would have a horizontal polarisation. If the pigeon flew upside down, it would still
have a vertical polarisation - its wing fluctuations would still be upwards and
downwards. If the pairs of Objects in our analogy were upside down, they would
still have a vertical polarisation. In our analogy, there is no way to know if the
Objects are upside down or not - they will still fluctuate up and down and in and
out with reference to the centre of the sphere.

Polarisation as a concept does not apply to longitudinal waves because the nature
of longitudinal waves means that the fluctuations are always in the same direction
as the movement of the wave.

We can also have a situation where the phenomenon being described by waves
rotates as it moves. In our analogy, the sphere would rotate as it travelled, with the
objects still rotating around it but maintaining their path around the same parts of
the sphere. The idea can be easier to visualise if we consider the axes rotating at
the same time. A portrayal of the idea, with just the axes drawn, and with the y-axis
pointing into the paper away from us is as follows. We are interested only in the
movement of the Object 1 up and down the z-axis. This is more complicated than
usual as the z-axis (and all the axes) are rotating as the Object 1 moves.
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In such a case, we would say that the wave describing the Object 1 has a “circular
polarisation”, and that the wave describing the fluctuations in the electric field has
a “circular polarisation”. In our analogy, we can distinguish between the directions
of rotation:

e If the sphere is rotating clockwise from the point of view of someone
observing it moving away from them, then there is a “right-handed circular
polarisation” or “RHCP” for short. In reality, we would be more interested in
the electric field. Therefore, we can say that right-handed circular
polarisation is when the electric field rotates clockwise as seen from the
point of view of somebody seeing the fields moving away from them.

e Ifthe spheres are rotating anticlockwise from the point of view of someone
observing the spheres moving away from them, then there is a “left -handed
circular polarisation” or “LHCP” for short. Again, in reality, we would be
more interested in the electric field. Therefore, we will say that left-handed
circular polarisation is when the electric field rotates anticlockwise as seen
from the point of view of somebody seeing the fields moving away from
them.

[If the terms “left handed” and “right handed” are not clear, then imagine
something rotating with its top moving to the left for “left handed” and its top
moving to the right for “right handed”.]

To complicate everything, the concept of circular polarisation is sometimes defined
in the opposite way - in other words, some people think of right-handed
polarisation as rotating clockwise from the point of view of the entity moving
towards them, and of left-handed polarisation as rotating anti-clockwise from the
point of view of the entity moving towards them. The “moving away” definition is
used in engineering among other subjects, while the “moving towards” definition is
used in the academic subject of optics. The conflict in definitions means that
whenever you use the terms, you should clarify which definition you have in mind.
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For our pigeon, circular polarisation would mean that the pigeon would still fly
with its head first, but it would rotate as it flew.

The different polarisations are most apparent in everyday life when using radio
antennas. For vertical and horizontal polarisations, a receiving radio antenna
might need to be placed either upright or at 90 degrees, depending on which of the
two common polarisations the transmitter is using. An RHCP or LHCP antenna also
has to match the circular polarisation direction of the transmitter. Some circular
polarisation antennas are distinctive because they have a helical shape.

The different polarisations of visible light become apparent with the use of
polarising filters. Sources such as the sun produce light of many different
polarisations. Such light is called “unpolarised light”. Polarising filters block light
that is not of a particular polarity.

Philosophical ideas

We could extend the analogy in ways that are not necessarily correct in terms of
electromagnetic radiation, but that create philosophical ideas about how other
theoretical wave-related particles could exist. In this way, the analogy stops being
an analogy of a real-world entity, and instead becomes an analogy of a fictional
entity. Doing this can help broaden our ideas of how waves could exist elsewhere.
For example, we could say that maybe when an object hits a surface, it is instantly
attracted to the objects within one wavelength’s distance around it. Maybe each
object repels those next to it, but this is only apparent when some objects are
blocked and there is a gap to be filled.

Summary of this section
Remember that this section has been an analogy of electromagnetic radiation. It

might be helpful in some situations, but conversely, it might interfere with your
learning in other situations.
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Conclusion

Electromagnetic waves are the most complicated form of waves that we have
looked at in this book. In this chapter, we have seen only the most trivial of
introductions to the subject. Note that there might have been things in this chapter
that are not completely correct, and some of what you have read might interfere
with your academic learning. To understand electromagnetic radiation well
requires a higher level of maths than that taught in this book.

www.timwarriner.com
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Chapter 35: Simple modulation

If we can control one or more of the attributes of a wave, we can use the wave to
encode information. Radio and sound waves are two such types of wave. Radio
waves can travel over long distances taking the information with them, which
makes them ideal for communication.

Information is generally encoded by altering the amplitude, frequency, or phase of
the wave in a pattern that is related to the information being encoded. This
alteration of the wave is called “modulation”. Modulation means modification,
influencing, or alteration. When used with waves, the word “modulation” usually
implies an alteration for the purposes of conveying a message. It is rarer to see the
term used to mean any alteration at all, but strictly speaking, it is just as valid to do
So.

We looked at amplitude modulation in Chapter 16. The basic idea of modulation is
that an existing pure wave with a particular amplitude, frequency or phase, has
one or more of its attributes altered to carry a message. This wave is called the
“carrier wave”. The change in attributes is usually done in accordance with the
instantaneous amplitude of a second wave or signal, which is essentially the
message. This second wave or signal is called the “modulating wave” or the
“modulating signal”.

In this chapter, we will look at “shift keying”, which is the easiest form of
modulation to understand. For nearly all of this chapter, we will work in degrees to
make the explanation clearer.

We will imagine a theoretical radio transmitter that constantly transmits a wave at
a particular frequency. The actual frequency is not important, and to keep this
example simple, we will say it is a very low frequency. [We will use different
frequencies in different examples to make the examples clearer.] In practice, a low
frequency wave would be difficult to transmit, but low frequencies make
everything clearer and easier to understand. We will say that the amplitude is 1
unspecified unit.

The only way to control our radio transmitter is via four push buttons: an “off”
button, an “increase amplitude” button, an “increase frequency” button, and an
“increase phase” button.
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e The “off” button instantly switches the transmitter off, and keeps it off while
pressed. When the button is released, the transmitter starts transmitting
again.

e The “increase amplitude” button instantly doubles the amplitude for the
time that it is pressed. When the button is released, the amplitude returns
to normal.

e The “increase frequency” button instantly doubles the frequency for the
time that it is pressed. When it is released, the frequency returns back to
how it was before.

e The “increase phase” button increases the overall phase of the wave by 90
degrees (0.5 radians) for the time that it is pressed. When it is released,
the overall phase returns back to zero. I will explain what this means in
more detail later in this chapter.

The effects of the four buttons can be seen in the following four wave graphs.
While the “off” button is pressed down, the wave is switched off completely:
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While the “increase amplitude” button is pressed down, the amplitude is doubled:
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While the “increase frequency” button is pressed down, the frequency is doubled.
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The “increase phase button” increases the instantaneous phase of the wave by 90
degrees while the button is pressed. This results in the wave curve being shifted 90
degrees to the left. When the button is released, the phase returns to normal. The
effect is the same as if we had two different waves with starting phases of 0
degrees and 90 degrees, and pressing the button switched from one to the other.

UnPresscd Pressed Un]m:s.sccl
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Despite having only four controls, we will use this transmitter to send messages to

the outside world.
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On-off keying

The simplest way to send a message with our transmitter would be the equivalent
of “one tap for yes; two taps for no”. In other words, we would use the “off” button
so that the transmitter is on for one short burst to indicate a “yes”, and on for two
short bursts to indicate a “no”. This is better than nothing, but it relies on our being
able to hear someone asking us questions, and that they ask relevant questions.

L
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In the above picture, we are using two cycles for each “tap”. This is an arbitrary

amount that makes the pictures clearer. We could just as easily use one cycle, half a
cycle, twenty cycles, or any number of cycles. The number of cycles we need to use
for each “tap” depends on how easily the message can be decoded. If our wave had
a frequency of, for example, 10 million cycles per second, then it would be difficult
for someone to distinguish one cycle, and we would need many more cycles for
each “tap” for the message to be interpreted correctly.

Expanding on the “one tap for yes” idea, we could switch the transmitter on and off
to count out letters of the alphabet where “a” is 1, “b” is 2, “c” is 3, “d” is 4, and so
on. For example, the transmitter could be off for a while, on for a short moment

« n

and then off again to indicate the letter “a”. It could be off for a while, then on for

two short moments, then off again to indicate the letter “b”. It could be on for three

“«_n,

short moments to indicate the letter “c”; and so on. This would take a lot of time to

send a message of any length. The word “cab” could be portrayed as so:
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A slightly better method is based on a tapping system often used by prisoners of
war. This uses a five-by-five grid of 25 letters of the Latin alphabet. By convention,
the letter “k” is left out - if we need to use a “k”, we can use “c” instead.

12345
1 abcde
2 f ghiij
3 1mnoop
4 gr s tu
5 vwxyz

Each letter is portrayed by tapping out its coordinates in the grid. Using our
transmitter, we can do the same thing by switching the machine on and off the
relevant number of times.

For example, the coordinates of the letter “s” are (3, 4). Therefore, we have the
transmitter on 3 times, pause with it off briefly, and then switch it on 4 more times.
This method is slightly faster than the previous one. In this method, the letter “z”
needs 10 switches on and off, whereas it would have needed 26 switches on and
off with the previous method. This method still requires the listener to understand

the system (or to figure it out), and it still requires a lot of switching on and off.

The letter “i” (4 followed by 2) would appear as so:
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[The layout of letters in the grid is not the best one possible. For English messages,

«_n

it would be better to keep the letter “k” and instead leave out “z”, which can be
replaced in any words with “s”. Doing that would leave the order of the alphabet
undisturbed. A faster system would have the most frequently used letters of the
alphabet at the start of the grid, but that would make the system harder to

remember.]
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A more advanced way of sending a message by switching on and off the
transmitter would be to use Morse code, and to switch the signal on and off
according to the dots and dashes of the Morse code alphabet. This is probably the
best method for sending letters of the alphabet. Depending on how many cycles we
use for each dot or dash, the letter “c” [dash dot dash dot] might appear as so:

dash dot dash dot
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A more complicated method for sending a message involves switching the signal
on and off according to the ones and zeroes of a binary encoded message. For
example, if we wanted to send the letter “u”, we would use the ASCII binary
encoding for that letter: 01110101. We would then send each digit of this number
in turn, from left to right as 0, 1, 1, 1, 0, 1, 0, 1. We would do this by using a
carefully spaced series of on switches and off switches with an “on” representing a
1, and an “off” representing a zero. Our signal would look like this:
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[[ will explain binary in detail in Chapter 40. For now, it is enough to know that it is
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a counting system where every digit is either zero or one. Each digit is called a
“bit”. The “American Standard Code For Information Interchange” (ASCII) is a
system that assigns every letter of the alphabet a number, so that computers can
have a consistent way of dealing with, and storing, text. The numbers can be
treated as being decimal numbers, hexadecimal numbers or binary numbers.
Treating them as binary numbers is useful in situations such as this. When treating
them as binary numbers, each letter is represented by 8 binary digits (which we
could also refer to as 8 bits). As an example, in the ASCII system, the letter “A” is
0x41 in hexadecimal, which is 01000001 in binary and 65 in decimal. The letter “B”
is 0x42 in hexadecimal, which is 01000010 in binary and 66 in decimal. The
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numbers from 0x01 to 0x7f in hexadecimal (1 to 127 in decimal, or 00000001 to
01111111 in binary) are used for a subset of the Latin alphabet, some punctuation,
and some mostly obsolete printer control codes. The numbers from 0x80 to 0xff in
hexadecimal (128 to 255 in decimal, or 10000000 to 11111111 in binary) are used
to portray other letters and special characters. Which characters this half of the
ASCII set represents varies depending on the language in which the ASCII
characters are being used. For example, if you use an English version of Microsoft
Windows, they will appear as accented Latin letters. If you use the Russian version
of Microsoft Windows, they will appear as Cyrillic letters.]

The above method of sending a message has both advantages and disadvantages
over the previous methods. The first disadvantage is that this method requires
very precise timing - if one of the on or off switches is too long or too short, the
message ceases to make sense. We could get around this by making every digit last
one second and looking at a watch while we sent the message. Another
disadvantage is that is harder to tell when the message starts or stops - if we
switch the machine off at night to go to sleep, someone might think we are sending
a very long series of zeroes. Conversely, if we did want to send a very long series of
zeroes (not that there are any ASCII characters consisting entirely of zeroes),
someone might think the message had ended. This problem can be solved by
sending a set number of ones and zeroes just before the actual message starts. For
example, we could send alternating 1s and Os eight times before our message
begins. This alerts the listener that a message is about to start, and indicates at
what point the message starts. Such an introduction is called a “preamble”. A
preamble might be 8 pairs of ones and zeroes, 16 pairs, or even more. The length
and pattern of the preamble of 8 pairs or more mean that it is unlikely to be
mistaken for the content of an actual message. So that the picture fits on the page,
the following drawing uses just 4 pairs of ones and zeroes before the message
starts. [In the real world, this would not be enough to avoid confusion with an
actual ASCII character.]
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Note that the actual message has to start immediately after the preamble because
any moments when there is no wave will be interpreted as zeroes.
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The end of the message could similarly be marked by a set number of alternating
ones and zeroes, or the context of the message alone might be enough to indicate
when it had ended.

The preamble is also useful to get the attention of someone waiting for the
message that the message is about to start.

The preamble solves yet another problem with this communication method.
Without there being an agreement between the sender and receiver over how
much time, or how many wave cycles, represent one individual binary digit, it can
be difficult to tell how many digits have been sent. For example, the binary number
1001 could just as easily be misinterpreted as 11000011 or 111000000111 or
1111000000001111 and so on, depending on how we divide the time up.

Iy ? ? ?
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The timing of the bits in the preamble solves this problem because it can be used
as a reference for the rest of the message.

A disadvantage of the binary encoding method from the point of view of our
transmitter is that it requires more switching on and off to send a letter of the
alphabet than, for example, Morse code. However, this and other disadvantages are
offset by one huge advantage - an advantage that makes this method so important
in modern times - by sending binary, we can send any type of information. We do
not have to send text - we can send any information that can be encoded as binary.
In other words, we can send images, documents, music, videos, encrypted
messages, and so on. It is unlikely that we would want to use our transmitter to
send someone an MP3 file, for example, by hand-keying the binary data, but we
could if we wanted to do so.

When a message is conveyed by switching the signal on and off as in all of the
above examples, the method is called “on-off keying”. This is often abbreviated to
“O0K”. On-off keying was used in early radio communications because it was
simple to do - a message could be sent by a person manually operating a lever that
switched the signal on and off. That lever was called a “key”, which is where the
term “keying” comes from. [Use of the word “key” to mean a lever-like switch (as
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opposed to an object that opens locks), can also be seen when we discuss keys on a
piano and keys on a typewriter.] As on-off keying was used in the early days of
radio communications, the concept can seem a bit simplistic compared with some
other forms of modulation, but there are still situations when it is useful. For
example, the simplicity of Morse code means it is possible to understand a received
message when other types of communication are too faint to be heard. This means
that we can communicate with someone much further away or in much worse
conditions than when using other methods. [With Morse code, on-off keying is
often called “continuous wave” or “CW”.] On-off keying is used to control the light
source in some fibre optic cable systems. Television remote controls use on-off
keying with an infrared LED.

A potential source of confusion

[This section will be irrelevant to many people, and most people might never even
need to think about it.]

If you think too much or too little about waves, it is easy to believe, mistakenly,
that the time-based wave graphs should show the binary digits in reverse order.
This comes from forgetting what the wave graphs are showing. The graphs show
the instantaneous amplitude at particular times since the start (or the starting
event). At t = 0 on the graph, we see the instantaneous amplitude at the moment
when we started recording the information shown on the graph. No matter how
much time passes, the shape of the graph at t = 0 will stay the same. Similarly, once
the time has passed 0.1 seconds, the shape of the graph at t = 0.1 seconds will
always stay the same. The graph curve is extended down the time axis, as opposed
to sliding down the time axis. The time refers to the time since we started and the
events that happened at those times. The time does not refer to “the number of
seconds since now”. Although this might be obvious, it is a misunderstanding that
is easy to make, especially when dealing with aperiodic signals as we do in this
chapter. The mistake can arise from viewing time-based frequency domain graphs,
in which the contents of the graph might be in forwards or reverse time order, and
can slide up or down the graph as time progresses, depending on how they are laid
out.

If you are suffering from any doubt about the layout of the wave graphs, this
section will help remove any confusion. We will look at a wave graph while we
send the binary digits 01110101 digit by digit. This time, we will number the time
axis, and we will send one binary digit every second.
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First, we send the digit “0”. Our graph looks like this:

There is nothing for the time from t = 0 to t = 1. Next, we send the digit “1”, which
we do by transmitting one second of a two-cycle-per-second wave. As we are doing
this between one second and two seconds since we started, this appears between
the times t = 1 and t = 2 on the graph:

The gap we “sent” between t = 0 and t = 1 will stay forever in the same place on the
graph because that part of the graph refers to the time up to one second from when
we started sending the message. The one second of wave that we sent between the
times of t = 1 and t = 2 will remain forever at that place on the graph because the
time refers to the time since we started, and that cannot change.

Next, we send another “1” digit, which we do by sending one second of a two-cycle-
per-second wave. Our graph now looks like this:
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Everything that has happened at a time since the start remains fixed time-wise
because the time at which an event has happened relative to the starting time
cannot change. The rest of the signal is sent as shown in the following pictures:
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Although this all might seem very obvious, it is easy for the situation to stop being
obvious, in which case, it pays to think back to what the time axis and the graph are
really showing.

The speed of light

An interesting point about communication is made more obvious when thinking
about on-off keying. It is common to hear people say that a radio signal travels at
the speed of light, and from that they deduce that the message being conveyed
travels at the speed of light. However, while the electromagnetic radiation in radio
or light might travel at the speed of light, the message as a whole does not. In on-off
keying, the speed of the message is dependent on the speed that a person or a
machine can switch the signal on and off. If we can only switch the machine on and
off once every second, then obviously, the message as a whole is not going to be
sent particularly quickly. Even with the other forms of modulation discussed later
in this chapter, the speed of the message is limited by how quickly the switching of
an attribute can be done. It is true that each change in a state of the radio wave
(such as whether it is changing from on to off, or from off to on) can be received
after a delay based on the distance of the receiver and the speed of light. However,
the whole message requires more than one change of state. This concept becomes
even more obvious when you imagine someone using semaphore to pass a
message at a distance using flags - the change in the letter of the alphabet being
shown travels at the speed of light, but how quickly the changes occur depends on
how quickly someone can move their arms.
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Shift keying

On-off keying used the “off” button of the transmitter. There are also buttons for
amplitude, frequency and phase. These three buttons alter three of the four main
attributes of a wave. [We will ignore mean level for now.] By changing one of the
three attributes in an organised way, we can encode information into the wave.

It is possible to use the amplitude, frequency and phase buttons in the same way
that we used the off button. For example, we could say that the amplitude being its
normal value is analogous to the transmitter being off, and the amplitude being a
higher value (when the button is pressed) is analogous to the transmitter being on.
Therefore, the “one tap for yes; two taps for no” system would be executed as one
press of the higher amplitude button for “yes” and two presses for “no”. We could
also do one press of the higher frequency button or the different phase button to
mean “yes” and two presses to mean “no”. Each press of a button, or each change in
the amplitude, frequency or phase makes a noticeable change to the state of the
wave, and is, therefore, one that can be interpreted as having a meaning.

We could also do the “ais 1 press; b is 2 presses; c is 3 presses” method, the letter
grid method, and even the Morse code method using the amplitude, frequency or

o _»n

phase buttons. Using the amplitude button to send the letter “c” in Morse code

would look like this:
dash dot dash dot
H/;\m —— (e oy ——
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Using the frequency button to spell out the letter “c” in Morse code would look like
this:

1 dash

MMM A LM AR A AR,
LB RR RN

In the above picture, the dashes and dots are distinguishable from the gaps

oy

—
T

between them by the way the frequency is twice as fast during a dot or a dash.

All of these methods are known as “shift keying” because an attribute of the wave
(amplitude, frequency or phase) is shifted to indicate a change. The “keying” part of
the term comes from the “key” (as in lever) that was originally used in manual on-
off keying. Usually, when people refer to shift keying, they are thinking of using the
shifts to encode and transmit binary digits. The amplitude, frequency and phase
buttons on our transmitter are just as suited to transmitting binary digits as the off
button. We will ignore the above methods of shift keying, and we will focus on
using shift keying just for transmitting binary numbers.

Amplitude shift keying
Amplitude shift keying on our transmitter

For our transmitter, we will use the button that doubles the amplitude to send
binary messages using shift keying. While the button is not pressed and the wave's
amplitude is at its normal amount (1 unit) for one second, we will be indicating a
zero. When the button is pressed for one second, thus raising the amplitude to 2
units, we will be indicating a one. This system is called “amplitude shift keying” or
“ASK” for short. Amplitude shift keying does not need specifically one second for
each one or zero - it can use any length of time or any number of cycles, as long as
it is consistent for the whole message being sent, and as long as the signal can be
easily decoded.
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Amplitude shift keying is analogous to someone repeatedly pressing one key on a
piano, but pressing it harder to make a louder sound when they want to indicate a
1, and pressing it more softly to indicate a 0.

To indicate that we are going to start a message, and to indicate the timing, we
could send a 101010... preamble, but to make things simpler, we will ignore the
preamble for now.

If we want to send the uppercase letter “I” using amplitude shift keying, we would
first look up the ASCII encoding for that letter in binary: 01001001. We would then
send each digit of this number in turn, from left to right, by pressing the “raise
amplitude” button for one second to indicate a 1, and leaving the “raise amplitude”
button unpressed for one second to indicate a 0. This has to be done with perfect
timing or the message will be corrupted.
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Sidebands

The frequency and phase of the wave formula remain untouched during the
amplitude shift keying. However, it is worth noting that the signal as a whole is not
a pure wave or a periodic wave. There is no pure wave that looks like this entire
signal. As | explained in part one of this book, when a signal is not a pure wave, it is,
instead, the sum of two or more pure waves of various amplitudes, frequencies and
phases. Therefore, the above signal as a whole is really the sum of waves of
different amplitudes, frequencies and phases. Furthermore, as this signal is
aperiodic, we could also say that it is the sum of pieces of pure waves of various
amplitudes, frequencies, and phases.

The fact that the signal is the sum of pieces of waves of various amplitudes,
frequencies and phases means that the signal will take up more of the frequency
spectrum than if it were just a pure wave. An unavoidable consequence of all shift
keying, and in fact, of all modulation, is that when a pure wave is altered to carry
information, it stops being a pure wave. Therefore, it takes up more of the
frequency spectrum. Careless use of modulation can cause a signal to interfere
with broadcasts on nearby frequencies. The extra frequencies existing from
modulating a pure wave are called “sidebands” [because when viewed on a
frequency domain graph, they appear as bands of frequencies to either side of the
main frequency]. Sidebands are unavoidable with any modulation because any
temporary alteration of an existing pure wave stops it being a single pure wave.
Strictly speaking, the sidebands are the message that is being sent. If there were no
sidebands, there would just be the pure wave and, therefore, no message. The
extra frequencies will be visible on a time-based frequency domain graph at the
time surrounding the change.

[From a theoretical and pedantic point of view, unless a wave continues forever,
and has continued forever, it is not a pure wave because no pure wave ever stops
or starts. In this way of thinking, there can be no real-world pure waves, and every
real-world wave is actually a signal consisting of more than one frequency. In
nearly all of the theoretical study of waves, and in practice, this idea can be
ignored.]

We can analyse a signal to see the sidebands. Because a typically modulated signal
would not be a periodic signal, we would not be able to analyse it using Fourier
series analysis (as discussed in Chapter 18). Instead, we would need the more
complicated Fourier Transform. If there were sufficient cycles per binary digit,
Fourier series analysis would still give us a reasonable idea of the message if we
analysed the signal section by section. Fourier series analysis would also work
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perfectly if we had a message that, by chance, happened to be a periodic signal. For
example, if we send the binary digits: “1010101010... “, the signal would be
periodic.

As a simple example of sending “1010101010...", we will look at the following
signal, which changes from being:

“y=1sin (360 * 2t)”

.. to:

“y =2 sin (360 * 2t)”

... and back again.

N

;\\/\U[\A/\/\[\/\[\/\/\f\
MRV i

_l...

The signal as a whole has a frequency of 0.5 cycles per second. Therefore, the
constituent frequencies will be multiples of 0.5 cycles per second.

Fourier series analysis would reveal that the constituent waves are as follows
(ignoring amplitudes less than 0.05 units):

“y=0.16977 sin ((360 * 0.5t) + 270)”

“y=0.36378 sin ((360 * 1.5t) + 270)”

“y = 1.5 sin (360 * 2t)”

“y=0.28294 sin ((360 * 2.5t) + 90)”

“y=0.07717 sin ((360 * 3.5t) + 90)”
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The frequency domain graph, with the y-axis as amplitude, looks like this:
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This frequency domain graph shows the waves that when added would create the
amplitude-shifted signal that represents 0101010101... . This is a simple example
of the sidebands resulting from amplitude shift keying. In practice, the signal
would seldom be periodic, and the sidebands would vary in frequency and
amplitude over time.

Amplitude shift keying in practice

Amplitude shift keying has similarities to on-off keying, and strictly speaking, on-
off keying is a form of amplitude shift keying where the amplitude switches
between a zero amplitude and a non-zero amplitude.

The particular form of amplitude shift keying used in the transmitter example is
called “binary amplitude shift keying” because there are two states of amplitude
used. “Binary” in this case refers to how there are two states, and not to how we
are encoding digits from the base 2 counting system called “binary”. We happen to
be sending binary digits, but the “binary” in “binary amplitude shift keying” refers
to how there are two states. The term “binary amplitude shift keying” is
abbreviated in several different ways, among which are “BASK”, “2-ASK”, “2ASK”
and “ASK2”, where the 2 refers to the number of states used. In this book, I will use
the abbreviation “2-ASK”.
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Amplitude shift keying is used in real-life radio communications in much the same
form as in our transmitter example.

It is possible to have more complicated amplitude shift keying involving more than
two different amplitudes, and therefore representing more than two different
states. For example, instead of having 2 amplitudes representing 0 and 1, we could
have 4 different amplitudes representing 00, 01, 10 and 11. We could have the
default amplitude of 1 unit representing the binary digits “00”, an amplitude of 2
units representing the binary digits “01”, an amplitude of 3 units representing the
binary digits “10”, and an amplitude of 4 units representing the binary digits “11”
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Such a system can be called “4-state amplitude shift keying” or “quaternary
amplitude shift keying”, where “quaternary” is an unnecessarily complicated way
of saying “four”. [The word “quaternary” is the “four” equivalent of the word
“binary”.] The abbreviations that you will see for this include “4-ASK”, “ASK4” and
“QASK”. Sometimes, the “Q” is considered as standing for “quad” instead of
“quaternary”. Personally, I think it is better and easier to use numbers instead of
adjectives to distinguish the types of shifting. Therefore, | will refer to this type of
ASK as “4-ASK”.
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4-ASK allows us to send a binary message in half the time of normal ASK because
each different amplitude level represents two digits. For example, the letter “a”,
which is the binary number 01100001 in ASCII, would be sent as “01”, then “10”,
then “00”, then “01”. Sending the whole 8 digit binary number would require only
4 changes in amplitude instead of 8.
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[If our binary number did not contain an even number of digits, we would have to
add an extra zero at the end, and hope that the person receiving the message knew
that the extra zero was just irrelevant “padding”].

With 2-ASK, we would have had to send the message as “0”, “1”, “0”, “1”, “0”, “0”,
“0”, “1”, which obviously takes twice as long.

We could increase the number of amplitudes used to 8, 16, 32 or even more. These
would be called 8-ASK, 16-ASK, 32-ASK and so on.

8-ASK would let us send three digits at a time: 000, 001, 010, 011, 100, 101, 110,
111.
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We could assign meanings to each amplitude according to this table:

Amplitude Bits represented by this
amplitude existing for 1 second

0.5 units 000
1.0 units 001
1.5 units 010
2.0 units 011
2.5 units 100
3.0 units 101
3.5 units 110
4.0 units 111

The choice of which amplitude is used to represent which three bits is arbitrary. I
am choosing these particular amplitudes because they fit nicely in a drawing. We
could use any amplitudes in any order as long as they are different and
distinguishable, and the receiver knows what each one represents.

In this system of 8-ASK, the binary numbers from 000 to 111 appear as so in the
form of a signal:
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If we wanted to send the binary number for “a” (01100001”), we would have to
send it as three separate changes of state, each containing 3-bits. This means that
we would have to add an extra digit at the end of our binary number to make it a
multiple of 3. We could use a one or a zero as long as the receiver of the message
knew to ignore it. It is more common to pad out numbers with zeroes. In this
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example, we will use a zero. The digits would become 011000010. We would send
the following three-bit numbers:

011

000

010

These would require these amplitudes:
2 units

0.5 units

1.5 units

... all broadcast for one second each.

[In practice, we would not have to send them for one second each. We could choose
any number of seconds or cycles as long as we were consistent - the time that each
amplitude stays at the same level to indicate a number has to be the same. Another
point is that the receiver must be aware of the timing and have the ability to
decode the signal at that rate. If we were decoding the signal by hand or expecting
interference, we would need to use longer times; if we were decoding the signal
with electronics, and not expecting interference, we could use shorter times.]

A signal encoding the above binary numbers using our particular system of 8-ASK

looks like this:
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16-ASK would allow sending four digits at a time: 0000, 00